علوم وتكنولوجيا

The evolution of facultative symbiosis in stony corals

The evolution of facultative symbiosis in stony corals

  • Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).

    Article Google Scholar

  • Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    Article ADS CAS PubMed Google Scholar

  • Rivera, H. E. & Davies, S. W. Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity. Sci. Rep. 11, 21226 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Aichelman, H. E., Zimmerman, R. C. & Barshis, D. J. Adaptive signatures in thermal performance of the temperate coral Astrangia poculata. J. Exp. Biol. 222, jeb189225 (2019).

    Article PubMed Google Scholar

  • Fine, M., Zibrowius, H. & Loya, Y. Oculina patagonica: a non-lessepsian scleractinian coral invading the Mediterranean Sea. Mar. Biol. 138, 1195–1203 (2001).

    Article Google Scholar

  • Shemesh, T. et al. The effects of elevated temperatures on the reproductive biology of a mediterranean coral, Oculina patagonica. Oceans 5, 758–769 (2024).

    Article Google Scholar

  • Reaka-Kudla, M. L. in Biodiversity II: Understanding and Protecting our Biological Resources (eds Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 83–108 (1997).

  • Gates, R. D., Baghdasarian, G. & Muscatine, L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol. Bull. 182, 324–332 (1992).

    Article CAS PubMed Google Scholar

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article ADS CAS PubMed Google Scholar

  • Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).

    Article ADS Google Scholar

  • Leydet, K. P. & Hellberg, M. E. The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol. Biol. 15, 79 (2015).

    Article PubMed PubMed Central Google Scholar

  • Rubio-Portillo, E. et al. Eukarya associated with the stony coral Oculina patagonica from the Mediterranean Sea. Mar. Genomics 17, 17–23 (2014).

    Article PubMed Google Scholar

  • Rubio-Portillo, E., Vázquez-Luis, M., Valle, C., Izquierdo-Muñoz, A. & Ramos-Esplá, A. A. Growth and bleaching of the coral Oculina patagonica under different environmental conditions in the western Mediterranean Sea. Mar. Biol. 161, 2333–2343 (2014).

    Article CAS Google Scholar

  • Rodolfo-Metalpa, R., Reynaud, S., Allemand, D. & Ferrier-Pagès, C. Temporal and depth responses of two temperate corals, Cladocora caespitosa and Oculina patagonica, from the North Mediterranean Sea. Mar. Ecol. Prog. Ser. 369, 103–114 (2008).

    Article ADS Google Scholar

  • Serrano, E., Ribes, M. & Coma, R. Demographics of the zooxanthellate coral Oculina patagonica along the Mediterranean Iberian coast in relation to environmental parameters. Sci. Total Environ. 634, 1580–1592 (2018).

    Article ADS CAS PubMed Google Scholar

  • Salomidi, M., Katsanevakis, S., Issaris, Y., Tsiamis, K. & Katsiaras, N. Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biol. Invasions 15, 1961–1971 (2013).

    Article Google Scholar

  • Terrón-Sigler, A., Casado-Amezúa, P. & Torre, F. E. Abundance and distribution of the rapid expansive coral Oculina patagonica in the Northern Alborán Sea (Western Mediterranean). Mar. Biodivers. Rec. 8, e45 (2015).

    Article Google Scholar

  • Pastor, F., Valiente, J. A. & Palau, J. L. Sea surface temperature in the Mediterranean: trends and spatial patterns (1982–2016). Pure Appl. Geophys. 175, 4017–4029 (2018).

    Article ADS Google Scholar

  • Martinez, S., Bellworthy, J., Ferrier-Pagès, C. & Mass, T. Selection of mesophotic habitats by Oculina patagonica in the Eastern Mediterranean Sea following global warming. Sci. Rep. 11, 18134 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Fuller, Z. L. et al. Population genetics of the coroal Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).

    Article CAS PubMed Google Scholar

  • Stankiewicz, K. H. et al. Genomic comparison of the temperate coral Astrangia poculata with tropical corals yields insights into winter quiescence, innate immunity, and sexual reproduction. G3 15, jkaf033 (2025).

    Article CAS PubMed PubMed Central Google Scholar

  • Ying, H. et al. Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biol. 19, 175 (2018).

    Article PubMed PubMed Central Google Scholar

  • Fletcher, C. & da Conceicoa, L. P. The genome sequence of the starlet sea anemone, Nematostella vectensis (Stephenson, 1935). Wellcome Open Res. 8, 79 (2023).

    Article Google Scholar

  • Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Saunders, P. A. & Muyle, A. Sex chromosome evolution: hallmarks and question marks. Mol. Biol. Evol. 41, msae218 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Mao, Y. & Satoh, N. A likely ancient genome duplication in the speciose reef-building coral genus, Acropora. iScience 13, 20–32 (2019).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Noel, B. et al. Pervasive tandem duplications and convergent evolution shape coral genomes. Genome Biol. 24, 123 (2023).

    Article PubMed PubMed Central Google Scholar

  • Voolstra, C. R. et al. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci. Rep. 7, 17583 (2017).

    Article ADS PubMed PubMed Central Google Scholar

  • García-Castro, H. et al. ACME dissociation: a versatile cell fixation–dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).

    Article PubMed PubMed Central Google Scholar

  • Najle, S. R. et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 186, 4676–4693.e29 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 20, 206 (2019).

    Article PubMed PubMed Central Google Scholar

  • Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534.e20 (2018).

    Article PubMed Google Scholar

  • Steger, J. et al. Single-cell transcriptomics identifies conserved regulators of neuroglandular lineages. Cell Rep. 40, 111370 (2022).

    Article CAS PubMed Google Scholar

  • Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–67 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).

    Article CAS PubMed Google Scholar

  • Valadez-Ingersoll, M. et al. Cell type-specific immune regulation under symbiosis in a facultatively symbiotic coral. ISME J. 19, wraf132 (2025).

    Article CAS PubMed PubMed Central Google Scholar

  • Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open. Sci. 2, 140214 (2015).

    Article ADS PubMed PubMed Central Google Scholar

  • Wall, C. B. et al. The effects of environmental history and thermal stress on coral physiology and immunity. Mar. Biol. 165, 56 (2018).

    Article Google Scholar

  • Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl Acad. Sci. USA 112, 607–612 (2015).

    Article ADS CAS PubMed Google Scholar

  • Matz, M. V. Not-so-mutually beneficial coral symbiosis. Curr. Biol. 34, R798–R801 (2024).

    Article CAS PubMed Google Scholar

  • Thies, A. B., Quijada-Rodriguez, A. R., Zhouyao, H., Weihrauch, D. & Tresguerres, M. A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH3 and CO2 delivery to algal symbionts. Sci. Adv. 8, 303 (2022).

    Article Google Scholar

  • Griffin, M. J., Wong, R. H. F., Pandya, N. & Sul, H. S. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J. Biol. Chem. 282, 5453–5467 (2007).

    Article CAS PubMed Google Scholar

  • Nardone, C. et al. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Mol. Cell 83, 57–73.e9 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Voss, P. A. et al. Host nutrient sensing is mediated by mTOR signaling in cnidarian-dinoflagellate symbiosis. Curr. Biol. 33, 3634–3647.e5 (2023).

    Article CAS PubMed Google Scholar

  • Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article CAS PubMed Google Scholar

  • Kim, D.-H. et al. mTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article CAS PubMed Google Scholar

  • Ramírez, J. A. et al. Folliculin interacting protein 1 maintains metabolic homeostasis during B cell development by modulating AMPK, mTORC1, and TFE3. J. Immunol. 203, 2899–2908 (2019).

    Article PubMed Google Scholar

  • Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Alderton, W. K., Cooper, C. E. & Knowles, R. G. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615 (2001).

    Article CAS PubMed PubMed Central Google Scholar

  • Soni, L. E., Warren, C. M., Bucci, C., Orten, D. J. & Hasson, T. The unconventional myosin-VIIa associates with lysosomes. Cell Motil. Cytoskeleton 62, 13–26 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Fric, J. et al. NFAT control of innate immunity. Blood 120, 1380–1389 (2012).

    Article CAS PubMed Google Scholar

  • Baumgarten, S. et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl Acad. Sci. USA 112, 11893–11898 (2015).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2017).

    Article CAS PubMed Google Scholar

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinformatics 3, lqaa108 (2021).

    Article PubMed PubMed Central Google Scholar

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435 (2006).

    Article CAS PubMed PubMed Central Google Scholar

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inf. Softw. Technol. 47, 965–978 (2005).

    Article Google Scholar

  • Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. Gigascience 7, giy093 (2018).

    Article PubMed PubMed Central Google Scholar

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article CAS PubMed Google Scholar

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article CAS PubMed Google Scholar

  • Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    Article CAS PubMed Google Scholar

  • Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res 9, 304 (2020).

    Article Google Scholar

  • Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    Article CAS PubMed Google Scholar

  • Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020).

    Article CAS PubMed Google Scholar

  • Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–301 (2012).

    Article CAS PubMed Google Scholar

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article CAS PubMed PubMed Central Google Scholar

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Steenwyk, J. L., Buida, T. J., Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article CAS PubMed Google Scholar

  • Grau-Bové, X. & Sebé-Pedrós, A. Orthology clusters from gene trees with Possvm. Mol. Biol. Evol. 38, 5204–5208 (2021).

    Article PubMed PubMed Central Google Scholar

  • Blake, J. A. et al. Mouse Genome Database (MGD): knowledgebase for mouse–human comparative biology. Nucleic Acids Res. 49, D981–D987 (2021).

    Article CAS PubMed Google Scholar

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article CAS PubMed PubMed Central Google Scholar

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article CAS PubMed Google Scholar

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article CAS PubMed Google Scholar

  • Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article CAS PubMed Google Scholar

  • Csűrös, M. & Miklós, I. in Research in Computational Molecular Biology (eds. Apostolico, A. et al.) 206–220 (Springer, 2006).

  • Csurös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

    Article PubMed Google Scholar

  • Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinformatics 12, 41–51 (2011).

    Article CAS PubMed Google Scholar

  • Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2022).

    Article CAS PubMed Google Scholar

  • Zwaenepoel, A. & Van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol. 36, 1384–1404 (2019).

    Article CAS PubMed Google Scholar

  • Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    Article PubMed PubMed Central Google Scholar

  • Proost, S. et al. i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11 (2012).

    Article CAS PubMed Google Scholar

  • Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).

    Article CAS PubMed Google Scholar

  • Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).

    Article CAS PubMed Google Scholar

  • Zolotarov, G., Grau-Bové, X. & Sebé-Pedrós, A. GeneExt: a gene model extension tool for enhanced single-cell RNA-seq analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.12.05.570120 (2023).

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article PubMed PubMed Central Google Scholar

  • Chari, T. et al. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Sci. Adv. 7, eabh1683 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Germain, P.-L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res 10, 979 (2022).

    Article PubMed Central Google Scholar

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233–12 (2019).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhuang, H., Wang, H. & Ji, Z. findPC: an R package to automatically select the number of principal components in single-cell analysis. Bioinformatics 38, 2949–2951 (2022).

    Article CAS PubMed Google Scholar

  • Büttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2019).

    Article PubMed Google Scholar

  • Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article MATH Google Scholar

  • Tournière, O. et al. NvPOU4/Brain3 functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis. Cell Rep. 30, 4473–4489.e5 (2020).

    Article PubMed Google Scholar

  • Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    Article ADS PubMed PubMed Central Google Scholar

  • Heumos, L. et al. Pertpy: an end-to-end framework for perturbation analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.08.04.606516 (2024).

  • Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article PubMed PubMed Central Google Scholar

  • Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).

    Article CAS PubMed Google Scholar

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article CAS PubMed Google Scholar

  • Tirosh, I. & Barkai, N. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biol. 8, R50 (2007).

    Article PubMed PubMed Central Google Scholar

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article Google Scholar

  • Tarashansky, A. J., Xue, Y., Li, P., Quake, S. R. & Wang, B. Self-assembling manifolds in single-cell RNA sequencing data. eLife 8, e48994 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018).

    Article PubMed PubMed Central Google Scholar

  • Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).

    Article CAS PubMed Google Scholar


  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-15 03:00:00

    الكاتب: Shani Levy

    تنويه من موقع "yalebnan.org":

    تم جلب هذا المحتوى بشكل آلي من المصدر: www.nature.com بتاريخ: 2025-10-15 03:00:00. الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع "yalebnan.org"، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى