علوم وتكنولوجيا

Niche-specific dermal macrophage loss promotes skin capillary ageing

Niche-specific dermal macrophage loss promotes skin capillary ageing

  • Nobs, S. P. & Kopf, M. Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol. 42, 495–507 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Minutti, C. M., Knipper, J. A., Allen, J. E. & Zaiss, D. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Vannella, K. M. & Wynn, T. A. Mechanisms of organ injury and repair by macrophages. Ann. Rev. Physiol. 79, 593–617 (2016).

  • Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Wu, Y. & Hirschi, K. K. Tissue-resident macrophage development and function. Front. Cell Dev. Biol. 8, 617879 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • van Beek, A. A., van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    Article
    PubMed

    Google Scholar

  • Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

  • Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article
    CAS
    PubMed

    Google Scholar

  • Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Fukada, K. & Kajiya, K. Age-related structural alterations of skeletal muscles and associated capillaries. Angiogenesis 23, 79–82 (2020).

    Article
    PubMed

    Google Scholar

  • Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Pluvinage, J. V. & Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat. Rev. Neurosci. 21, 93–102 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pineda, C. M. et al. Intravital imaging of hair follicle regeneration in the mouse. Nat. Protoc. 10, 1116–1130 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mesa, K. R. et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. Cell Stem Cell 23, 677–686 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Siret, C. et al. Deciphering the heterogeneity of the Lyve1+ perivascular macrophages in the mouse brain. Nat. Commun. 13, 7366 (2022).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • A-Gonzalez, N. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dietzel, S. et al. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. PLoS ONE 9, e99615 (2014).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Saytashev, I. et al. Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood. Biomed. Opt. Express 7, 3449 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bentov, I. & Reed, M. J. The effect of aging on the cutaneous microvasculature. Microvasc. Res. 100, 25–31 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Smith, L. Histopathologic characteristics and ultrastructure of aging skin. Cutis 43, 414–424 (1989).

    CAS
    PubMed

    Google Scholar

  • Li, L. et al. Age-related changes of the cutaneous microcirculation in vivo. Gerontology 52, 142–153 (2006).

    Article
    PubMed

    Google Scholar

  • Reeson, P., Choi, K. & Brown, C. E. VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. eLife 7, e33670 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Das, A. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tsuchida, Y. The effect of aging and arteriosclerosis on human skin blood flow. J. Dermatol. Sci. 5, 175–181 (1993).

    Article
    CAS
    PubMed

    Google Scholar

  • Abdellatif, M., Rainer, P. P., Sedej, S. & Kroemer, G. Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777 (2023).

    Article
    PubMed

    Google Scholar

  • Uderhardt, S., Martins, A. J., Tsang, J. S., Lämmermann, T. & Germain, R. N. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177, 541–555 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Freeman, S. A. et al. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367, 301–305 (2020).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Westman, J., Grinstein, S. & Marques, P. E. Phagocytosis of necrotic debris at sites of injury and inflammation. Front. Immunol. 10, 3030 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    Article
    ADS
    PubMed

    Google Scholar

  • Sasmono, R. T. et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leucoc. Biol. 82, 111–123 (2007).

    Article
    CAS

    Google Scholar

  • Lim, K. et al. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat. Immunol. 21, 1046–1057 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Egen, J. G. et al. Macrophage and T cell dynamics during the development and disintegration of Mycobacterial Granulomas. Immunity 28, 271–284 (2008).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cox, D. et al. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186, 1487–1494 (1997).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Perdiguero, E. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2015).

    Article

    Google Scholar

  • Blériot, C., Chakarov, S. & Ginhoux, F. Determinants of resident tissue macrophage identity and function. Immunity 52, 957–970 (2020).

    Article
    PubMed

    Google Scholar

  • Alfituri, O. A., Mararo, E. M., Steketee, P. C., Morrison, L. J. & Mabbott, N. A. Dermal bacterial LPS-stimulation reduces susceptibility to intradermal Trypanosoma brucei infection. Sci. Rep. 11, 9856 (2021).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Gow, D. J. et al. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol. Ther. 22, 1580–1592 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Keshvari, S. et al. Therapeutic potential of macrophage colony-stimulating factor in chronic liver disease. Dis. Model. Mech. 15, dmm049387 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109 (2020).

    Article
    PubMed

    Google Scholar

  • Ferrer, I. R. et al. A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury. Sci. Immunol. 4, eaax8704 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hasegawa, T. et al. Reduction in human epidermal Langerhans cells with age is associated with decline in CXCL14-mediated recruitment of CD14+ monocytes. J. Invest. Dermatol. 140, 1327–1334 (2019).

  • Fenske, N. A. & Lober, C. W. Structural and functional changes of normal aging skin. J. Am. Acad. Dermatol. 15, 571–585 (1986).

    Article
    CAS
    PubMed

    Google Scholar

  • Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487–496 (2008).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Voisin, B. et al. Macrophage-mediated extracellular matrix remodeling controls host Staphylococcus aureus susceptibility in the skin. Immunity 56, 1561–1577 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Vollmers, A. C. et al. Dermatopontin-expressing fibroblasts mediate an essential skin macrophage niche. Preprint at bioRxiv https://doi.org/10.1101/2024.11.21.624708 (2024).

  • Marsh, E., Gonzalez, D. G., Lathrop, E. A., Boucher, J. & Greco, V. Positional stability and membrane occupancy define skin fibroblast homeostasis in vivo. Cell 175, 1620–1633 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Varani, J. et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Invest. Dermatol. 114, 480–486 (2000).

    Article
    CAS
    PubMed

    Google Scholar

  • Cai, C. et al. Impaired dynamics of precapillary sphincters and pericytes at first-order capillaries predict reduced neurovascular function in the aging mouse brain. Nat. Aging 3, 173–184 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    Article
    CAS
    PubMed

    Google Scholar

  • Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jung, S. et al. Analysis of fractalkine receptor CX 3 CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

  • Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-15 03:00:00

    الكاتب: Kailin R. Mesa

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-15 03:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية حصرية ومواكبة لأبرز نجوم لبنان والعالم العربي.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى