علوم وتكنولوجيا

Magnetotelluric evidence for a melt

Magnetotelluric evidence for a melt

Magnetotelluric evidence for a melt

  • Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article
    PubMed

    Google Scholar

  • Bachmann, O. & Bergantz, G. W. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Rev. Mineral. Geochem. 69, 651–674 (2008).

    Article
    CAS

    Google Scholar

  • Cooper, K. M. & Kent, A. J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).

    Article
    ADS
    CAS

    Google Scholar

  • Holness, M. B., Stock, M. J. & Geist, D. Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).

    Article
    ADS
    CAS

    Google Scholar

  • Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. K. Determining the current size and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Andújar, J. et al. Experimental evidence for the shallow production of phonolitic magmas at Mayotte. C. R. Geosci. 354, 225–256 (2023).

    Article

    Google Scholar

  • Berthod, C. et al. The 2018-ongoing Mayotte submarine eruption: magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 571, 117085 (2021).

    Article
    CAS

    Google Scholar

  • Berthod, C. et al. Mantle xenolith-bearing phonolites and basanites feed the active volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean). Contrib. Mineral. Petrol. 176, 75 (2021).

    Article
    ADS
    CAS

    Google Scholar

  • Feuillet, N. et al. Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nat. Geosci. 14, 787–795 (2021).

    Article
    ADS
    CAS

    Google Scholar

  • White, S. M., Crisp, J. A. & Spera, F. J. Long‐term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosystems 7, 2005GC001002 (2006).

    Article

    Google Scholar

  • Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).

    Article

    Google Scholar

  • Chave, A. D. & Jones, A. G. The Magnetotelluric Method: Theory and Practice (Cambridge Univ. Press, 2012).

  • Yoshino, T. in Magmas Under Pressure (eds Kono, Y. & Sanloup, C.) 281–319 (Elsevier, 2018).

  • Johnson, N. E. et al. Magma imaged magnetotellurically beneath an active and an inactive magmatic segment in Afar, Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 105–125 (2016).

    Article
    ADS

    Google Scholar

  • Hill, G. J. et al. Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica. Nat. Commun. 13, 2989 (2022).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Comeau, M. J., Unsworth, M. J. & Cordell, D. New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric data. Geosphere 12, 1391–1421 (2016).

    Article
    ADS

    Google Scholar

  • Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth Planets Space 73, 150 (2021).

    Article
    ADS

    Google Scholar

  • Isaia, R. et al. 3D magnetotelluric imaging of a transcrustal magma system beneath the Campi Flegrei caldera, southern Italy. Commun. Earth Environ. 6, 213 (2025).

    Article
    ADS

    Google Scholar

  • Key, K., Constable, S., Liu, L. & Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Pommier, A. & Le-Trong, E. “SIGMELTS”: a web portal for electrical conductivity calculations in geosciences. Comput. Geosci. 37, 1450–1459 (2011).

    Article
    ADS

    Google Scholar

  • Thinon, I. et al. Volcanism and tectonics unveiled in the Comoros archipelago between Africa and Madagascar. C. R. Geosci. 354, 7–34 (2022).

    Article

    Google Scholar

  • Masquelet, C. et al. Intra-oceanic emplacement of the Comoros archipelago through inherited fracture zones. Tectonophysics 882, 230348 (2024).

    Article

    Google Scholar

  • Rusquet, A. et al. Phases of magmatism and tectonics along the Madagascar–Comoros volcanic chain, and synchronous changes in the kinematics of the Lwandle and Somalia plates. J. Geophys. Res. Solid Earth 130, e2024JB029488 (2025).

    Article
    ADS

    Google Scholar

  • Lacombe, T. et al. Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean). Bull. Volcanol. 86, 11 (2024).

    Article
    ADS

    Google Scholar

  • Nehlig, P. et al. Notice explicative, carte géologique France (1/30 000), feuille Mayotte (1179). Carte géologique par Lacquement, F., Nehlig, P. & Bernard, J. (BRGM Éditions, Service géologique national, Orléans, 2013).

  • Pelleter, A.-A. et al. Melilite-bearing lavas in Mayotte (France): an insight into the mantle source below the Comores. Lithos 208, 281–297 (2014).

    Article
    ADS

    Google Scholar

  • Lemoine, A. et al. The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption. Geophys. J. Int. 223, 22–44 (2020).

    Article
    ADS

    Google Scholar

  • Michon, L., Famin, V. & Quidelleur, X. Evolution of the East African Rift System from trap-scale to plate-scale rifting. Earth Sci. Rev. 231, 104089 (2022).

    Article

    Google Scholar

  • Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained “low 3He/4He” mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005).

    Article
    ADS
    CAS

    Google Scholar

  • Chauvel, C. et al. Fani Maoré, a new “young HIMU” volcano with extreme geochemistry. Earth Planet. Sci. Lett. 626, 118529 (2024).

    Article
    CAS

    Google Scholar

  • Famin, V., Michon, L. & Bourhane, A. The Comoros archipelago: a right-lateral transform boundary between the Somalia and Lwandle plates. Tectonophysics 789, 228539 (2020).

    Article

    Google Scholar

  • Mercury, N. et al. Onset of a submarine eruption east of Mayotte, Comoros archipelago: the first ten months seismicity of the seismo-volcanic sequence (2018–2019). C. R. Geosci. 354, 105–136 (2022).

    Article

    Google Scholar

  • Lavayssière, A. et al. A new 1D velocity model and absolute locations image the Mayotte seismo-volcanic region. J. Volcanol. Geotherm. Res. 421, 107440 (2022).

    Article

    Google Scholar

  • REVOSIMA Bulletin de Mai 2023 de l’activité sismo-volcanique à Mayotte (IPGP, Université de Paris, OVPF, BRGM, Ifremer, CNRS, 2023); https://www.ipgp.fr/wp-content/uploads/2023/06/Revosima_bull_20230606.pdf.

  • Cesca, S. et al. Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nat. Geosci. 13, 87–93 (2020).

    Article
    ADS
    CAS

    Google Scholar

  • Berthod, C. et al. Temporal magmatic evolution of the Fani Maoré submarine eruption 50 km east of Mayotte revealed by in situ sampling and petrological monitoring. C. R. Geosci. 354, 195–223 (2022).

  • Jacques, E. et al. Ring faulting and piston collapse in the mantle sustained the largest submarine eruption ever documented. Earth Planet. Sci. Lett. 647, 119026 (2024).

    Article
    CAS

    Google Scholar

  • Dofal, A., Fontaine, F. R., Michon, L., Barruol, G. & Tkalčić, H. Nature of the crust beneath the islands of the Mozambique Channel: constraints from receiver functions. J. Afr. Earth. Sci. 184, 104379 (2021).

    Article

    Google Scholar

  • Foix, O. et al. Offshore Mayotte volcanic plumbing revealed by local passive tomography. J. Volcanol. Geotherm. Res. 420, 107395 (2021).

    Article
    CAS

    Google Scholar

  • Sifré, D. et al. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F. & Peltier, A. Mayotte 2018 eruption likely sourced from a magmatic mush. Earth Planet. Sci. Lett. 590, 117566 (2022).

    Article
    CAS

    Google Scholar

  • Jorry, S. MAYOBS2 French Oceanographic Cruise, RV Marion Dufresne SISMER Database (French Oceanographic Fleet, 2019).

  • Darnet, M., Wawrzyniak, P., Tarits, P., Hautot, S. & d’Eu, J.-F. Mapping the geometry of volcanic systems with magnetotelluric soundings: results from a land and marine magnetotelluric survey performed during the 2018–2019 Mayotte seismovolcanic crisis. J. Volcanol. Geotherm. Res. 406, 107046 (2020).

    Article
    CAS

    Google Scholar

  • Wawrzyniak, P. et al. Dataset deposit for Nature paper Magnetotelluric evidence for a melt-rich magmatic reservoir beneath Mayotte. BRGM https://doi.org/10.18144/605e087b-74a7-4c3b-b733-a5e6167bea0a (2025).

  • Chave, A. D. & Thomson, D. J. Bounded influence magnetotelluric response function estimation. Geophys. J. Int. 157, 988–1006 (2004).

    Article
    ADS

    Google Scholar

  • Smaï, F. & Wawrzyniak, P. Razorback, an open source Python library for robust processing of magnetotelluric data. Front. Earth Sci. 8, 296 (2020).

    Article
    ADS

    Google Scholar

  • Hautot, S. et al. Deep structure of the Baringo Rift Basin (central Kenya) from three‐dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys. Res. Solid Earth 105, 23493–23518 (2000).

    Article

    Google Scholar

  • Hautot, S. et al. 3-D magnetotelluric inversion and model validation with gravity data for the investigation of flood basalts and associated volcanic rifted margins. Geophys. J. Int. 170, 1418–1430 (2007).

    Article
    ADS

    Google Scholar

  • Miensopust, M. P., Queralt, P., Jones, A. G. & 3D. MT modellers. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison. Geophys. J. Int. 193, 1216–1238 (2013).

    Article
    ADS

    Google Scholar

  • Ars, J.-M. et al. Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80, 56–68 (2019).

    Article
    ADS

    Google Scholar

  • Booker, J. R. The magnetotelluric phase tensor: a critical review. Surv. Geophys. 35, 7–40 (2014).

    Article
    ADS

    Google Scholar

  • Caricchi, L., Gaillard, F., Mecklenburgh, J. & Le Trong, E. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet. Sci. Lett. 302, 81–94 (2011).

    Article
    ADS
    CAS

    Google Scholar

  • Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).

    Article
    ADS
    CAS

    Google Scholar

  • Guo, X. et al. Electrical conductivity of CO2 and H2O‐bearing nephelinitic melt. J. Geophys. Res. Solid Earth 126, e2020JB019569 (2021).

    Article
    ADS
    CAS

    Google Scholar

  • Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).

    Article
    ADS
    CAS

    Google Scholar

  • Di Genova, D. et al. Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem. Geol. 475, 76–86 (2017).

    Article
    ADS

    Google Scholar

  • Jiménez-Mejías, M., Andújar, J., Scaillet, B. & Casillas, R. Experimental determination of H2O and CO2 solubilities of mafic alkaline magmas from Canary Islands. C. R. Geosci. 353, 289–314 (2021).

    Article

    Google Scholar

  • Gaillard, F. & Marziano, G. I. Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J. Geophys. Res. Solid Earth 110, 2004JB003282 (2005).

    Article

    Google Scholar

  • Blatter, D., Naif, S., Key, K. & Ray, A. A plume origin for hydrous melt at the lithosphere–asthenosphere boundary. Nature 604, 491–494 (2022).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Miller, K. J., Zhu, W., Montési, L. G. & Gaetani, G. A. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273–282 (2014).

    Article
    ADS
    CAS

    Google Scholar

  • Gardès, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).

    Article

    Google Scholar

  • Gardés, E., Gaillard, F. & Tarits, P. Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosystems 15, 4984–5000 (2014).

    Article
    ADS

    Google Scholar

  • Yang, X. et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. 116, B04208 (2011).

    ADS

    Google Scholar

  • Adam, J., Turner, M., Hauri, E. H. & Turner, S. Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am. Mineral. 101, 876–888 (2016).

    Article
    ADS

    Google Scholar

  • Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).

    Article
    ADS
    CAS

    Google Scholar

  • GeoTools (Viridien Group, 2025).



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-29 02:00:00

    الكاتب: Pierre Wawrzyniak

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-29 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى