علوم وتكنولوجيا

Multi-qubit nanoscale sensing with entanglement as a resource

Multi-qubit nanoscale sensing with entanglement as a resource

  • Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).

    Article Google Scholar

  • Rovny, J. et al. Nanoscale covariance magnetometry with diamond quantum sensors. Science 378, 1301–1305 (2022).

    Article ADS CAS PubMed Google Scholar

  • Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).

    Article ADS CAS PubMed Google Scholar

  • Eldredge, Z., Foss-Feig, M., Gross, J. A., Rolston, S. L. & Gorshkov, A. V. Optimal and secure measurement protocols for quantum sensor networks. Phys. Rev. A 97, 042337 (2018).

    Article ADS CAS Google Scholar

  • Song, X. et al. Agnostic Phase Estimation. Phys. Rev. Lett. 132, 260801 (2024).

    Article ADS MathSciNet CAS PubMed Google Scholar

  • Szańkowski, P., Trippenbach, M., Cywiński, Ł. & Band, Y. B. The dynamics of two entangled qubits exposed to classical noise: Role of spatial and temporal noise correlations. Quantum Inf. Process. 14, 3367–3397 (2015).

    Article ADS MathSciNet Google Scholar

  • Norris, L. M., Paz-Silva, G. A. & Viola, L. Qubit noise spectroscopy for non-Gaussian dephasing environments. Phys. Rev. Lett. 116, 150503 (2016).

    Article ADS PubMed Google Scholar

  • Du, J., Shi, F., Kong, X., Jelezko, F. & Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 96, 025001 (2024).

    Article ADS CAS Google Scholar

  • Allert, R. D., Briegel, K. D. & Bucher, D. B. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem. Commun. 58, 8165–8181 (2022).

    Article CAS Google Scholar

  • Machado, F., Demler, E. A., Yao, N. Y. & Chatterjee, S. Quantum noise spectroscopy of dynamical critical phenomena. Phys. Rev. Lett. 131, 070801 (2023).

    Article ADS CAS PubMed Google Scholar

  • Ziffer, M. E. et al. Quantum noise spectroscopy of critical slowing down in an atomically thin magnet. Preprint at arxiv.org/abs/2407.05614 (2024).

  • Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Xue, R. et al. Signatures of magnon hydrodynamics in an atomically-thin ferromagnet. Preprint at arxiv.org/abs/2403.01057 (2024).

  • Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article ADS CAS PubMed Google Scholar

  • Ariyaratne, A., Bluvstein, D., Myers, B. A. & Jayich, A. C. B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 9, 2406 (2018).

    Article ADS PubMed PubMed Central Google Scholar

  • Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).

    Article ADS CAS PubMed Google Scholar

  • Curtis, J. B. et al. Probing the Berezinskii–Kosterlitz–Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry. Phys. Rev. B 110, 144518 (2024).

    Article ADS CAS Google Scholar

  • Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019).

    Article ADS CAS Google Scholar

  • Ji, W. et al. Correlated sensing with a solid-state quantum multisensor system for atomic-scale structural analysis. Nat. Photon. 18, 230–235 (2024).

    Article ADS CAS Google Scholar

  • Delord, T., Monge, R. & Meriles, C. A. Correlated spectroscopy of electric noise with color center clusters. Nano Lett. 24, 6474–6479 (2024).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    Article ADS PubMed Google Scholar

  • Liu, Z. et al. Quantum noise spectroscopy of superconducting dynamics in thin film Bi2Sr2CaCu2O{8+δ}. Preprint at arxiv.org/abs/2502.04439 (2025).

  • Huxter, W. S., Dalmagioni, F. & Degen, C. L. Multiplexed scanning microscopy with dual-qubit spin sensors. Phys. Rev. Lett. 135, 153801 (2024).

    Article ADS Google Scholar

  • Chen, X. et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl. 4, e230–e230 (2015).

    Article CAS Google Scholar

  • Chen, E. H., Gaathon, O., Trusheim, M. E. & Englund, D. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett. 13, 2073–2077 (2013).

    Article ADS CAS PubMed Google Scholar

  • Braunschweiler, L. & Ernst, R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    ADS CAS Google Scholar

  • Shields, B. J., Unterreithmeier, Q. P., de Leon, N. P., Park, H. & Lukin, M. D. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article ADS CAS PubMed Google Scholar

  • Pfender, M. et al. High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat. Commun. 10, 594 (2019).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94–98 (2005).

    Article CAS Google Scholar

  • Takács, I. & Ivády, V. Accurate hyperfine tensors for solid state quantum applications: case of the NV center in diamond. Commun. Phys. 7, 178 (2024).

  • Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).

    CAS Google Scholar

  • Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr–Purcell sequences. J. Magn. Reson 89, 479–484 (1990).

    ADS CAS Google Scholar

  • Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article ADS PubMed Google Scholar

  • Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article ADS CAS PubMed Google Scholar

  • Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).

    Article ADS CAS PubMed Google Scholar

  • Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006).

    Article CAS Google Scholar

  • Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010).

    Article CAS Google Scholar

  • Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).

    Article CAS Google Scholar

  • Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014).

    Article ADS PubMed Google Scholar

  • Lee, J. et al. Dressed-state control of effective dipolar interaction between strongly-coupled solid-state spins. npj Quantum Inf. 9, 77 (2023).

    Article ADS Google Scholar

  • Joas, T. et al. High-fidelity electron spin gates for scaling diamond quantum registers. Phys. Rev. X 15, 021069 (2025).

    CAS Google Scholar

  • Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article ADS Google Scholar

  • Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article CAS Google Scholar

  • Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    Article ADS CAS Google Scholar

  • Laraoui, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).

    Article ADS PubMed Google Scholar

  • Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    Article ADS CAS PubMed Google Scholar

  • Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    Article ADS CAS PubMed Google Scholar

  • Zheng, T.-X. et al. Preparation of metrological states in dipolar-interacting spin systems. npj Quantum Inf. 8, 150 (2022).

    Article ADS Google Scholar

  • Gali, A., Fyta, M. & Kaxiras, E. Ab Initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77, 155206 (2008).

    Article ADS Google Scholar

  • Zhang, Y., Samajdar, R. & Gopalakrishnan, S. Nanoscale sensing of spatial correlations in nonequilibrium current noise. Preprint at arxiv.org/abs/2404.15398 (2024).

  • Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article ADS CAS PubMed Google Scholar

  • Cheng, K.-H. et al. Massively multiplexed nanoscale magnetometry with diamond quantum sensors. Phys. Rev. X 15, 031014 (2025).

    CAS Google Scholar

  • Cambria, M., Chand, S., Reiter, C. M. & Kolkowitz, S. Scalable parallel measurement of individual nitrogen-vacancy centers. Phys. Rev. X 15, 031015 (2025).

    CAS Google Scholar

  • Brady, A. J., Wang, Y.-X., Albert, V. V., Gorshkov, A. V. & Zhuang, Q. Correlated noise estimation with quantum sensor networks. Preprint at arxiv.org/abs/2412.17903 (2024).

  • Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).

    Article ADS CAS PubMed Google Scholar

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    Article CAS Google Scholar

  • Wilen, C. D. et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature 594, 369–373 (2021).

    Article ADS CAS PubMed Google Scholar

  • McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2022).

    Article CAS Google Scholar

  • Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article Google Scholar

  • Marion, D. & Wüthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967–974 (1983).

    Article ADS CAS PubMed Google Scholar


  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-11-26 02:00:00

    الكاتب: Jared Rovny

    تنويه من موقع "yalebnan.org":

    تم جلب هذا المحتوى بشكل آلي من المصدر: www.nature.com بتاريخ: 2025-11-26 02:00:00. الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع "yalebnan.org"، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى