
Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).
Rovny, J. et al. Nanoscale covariance magnetometry with diamond quantum sensors. Science 378, 1301–1305 (2022).
Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).
Eldredge, Z., Foss-Feig, M., Gross, J. A., Rolston, S. L. & Gorshkov, A. V. Optimal and secure measurement protocols for quantum sensor networks. Phys. Rev. A 97, 042337 (2018).
Song, X. et al. Agnostic Phase Estimation. Phys. Rev. Lett. 132, 260801 (2024).
Szańkowski, P., Trippenbach, M., Cywiński, Ł. & Band, Y. B. The dynamics of two entangled qubits exposed to classical noise: Role of spatial and temporal noise correlations. Quantum Inf. Process. 14, 3367–3397 (2015).
Norris, L. M., Paz-Silva, G. A. & Viola, L. Qubit noise spectroscopy for non-Gaussian dephasing environments. Phys. Rev. Lett. 116, 150503 (2016).
Du, J., Shi, F., Kong, X., Jelezko, F. & Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 96, 025001 (2024).
Allert, R. D., Briegel, K. D. & Bucher, D. B. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem. Commun. 58, 8165–8181 (2022).
Machado, F., Demler, E. A., Yao, N. Y. & Chatterjee, S. Quantum noise spectroscopy of dynamical critical phenomena. Phys. Rev. Lett. 131, 070801 (2023).
Ziffer, M. E. et al. Quantum noise spectroscopy of critical slowing down in an atomically thin magnet. Preprint at arxiv.org/abs/2407.05614 (2024).
Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).
Xue, R. et al. Signatures of magnon hydrodynamics in an atomically-thin ferromagnet. Preprint at arxiv.org/abs/2403.01057 (2024).
Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).
Ariyaratne, A., Bluvstein, D., Myers, B. A. & Jayich, A. C. B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 9, 2406 (2018).
Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).
Curtis, J. B. et al. Probing the Berezinskii–Kosterlitz–Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry. Phys. Rev. B 110, 144518 (2024).
Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019).
Ji, W. et al. Correlated sensing with a solid-state quantum multisensor system for atomic-scale structural analysis. Nat. Photon. 18, 230–235 (2024).
Delord, T., Monge, R. & Meriles, C. A. Correlated spectroscopy of electric noise with color center clusters. Nano Lett. 24, 6474–6479 (2024).
Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).
Liu, Z. et al. Quantum noise spectroscopy of superconducting dynamics in thin film Bi2Sr2CaCu2O{8+δ}. Preprint at arxiv.org/abs/2502.04439 (2025).
Huxter, W. S., Dalmagioni, F. & Degen, C. L. Multiplexed scanning microscopy with dual-qubit spin sensors. Phys. Rev. Lett. 135, 153801 (2024).
Chen, X. et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl. 4, e230–e230 (2015).
Chen, E. H., Gaathon, O., Trusheim, M. E. & Englund, D. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett. 13, 2073–2077 (2013).
Braunschweiler, L. & Ernst, R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).
Shields, B. J., Unterreithmeier, Q. P., de Leon, N. P., Park, H. & Lukin, M. D. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).
Pfender, M. et al. High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat. Commun. 10, 594 (2019).
Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94–98 (2005).
Takács, I. & Ivády, V. Accurate hyperfine tensors for solid state quantum applications: case of the NV center in diamond. Commun. Phys. 7, 178 (2024).
Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).
Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr–Purcell sequences. J. Magn. Reson 89, 479–484 (1990).
Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).
Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).
Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).
Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006).
Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010).
Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).
Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014).
Lee, J. et al. Dressed-state control of effective dipolar interaction between strongly-coupled solid-state spins. npj Quantum Inf. 9, 77 (2023).
Joas, T. et al. High-fidelity electron spin gates for scaling diamond quantum registers. Phys. Rev. X 15, 021069 (2025).
Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).
Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).
Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).
Laraoui, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).
Zheng, T.-X. et al. Preparation of metrological states in dipolar-interacting spin systems. npj Quantum Inf. 8, 150 (2022).
Gali, A., Fyta, M. & Kaxiras, E. Ab Initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77, 155206 (2008).
Zhang, Y., Samajdar, R. & Gopalakrishnan, S. Nanoscale sensing of spatial correlations in nonequilibrium current noise. Preprint at arxiv.org/abs/2404.15398 (2024).
Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Cheng, K.-H. et al. Massively multiplexed nanoscale magnetometry with diamond quantum sensors. Phys. Rev. X 15, 031014 (2025).
Cambria, M., Chand, S., Reiter, C. M. & Kolkowitz, S. Scalable parallel measurement of individual nitrogen-vacancy centers. Phys. Rev. X 15, 031015 (2025).
Brady, A. J., Wang, Y.-X., Albert, V. V., Gorshkov, A. V. & Zhuang, Q. Correlated noise estimation with quantum sensor networks. Preprint at arxiv.org/abs/2412.17903 (2024).
Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).
Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).
Wilen, C. D. et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature 594, 369–373 (2021).
McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2022).
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).
Marion, D. & Wüthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967–974 (1983).
نشر لأول مرة على: www.nature.com
تاريخ النشر: 2025-11-26 02:00:00
الكاتب: Jared Rovny
تنويه من موقع “yalebnan.org”:
تم جلب هذا المحتوى بشكل آلي من المصدر:
www.nature.com
بتاريخ: 2025-11-26 02:00:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.