علوم وتكنولوجيا

A metallic p-wave magnet with commensurate spin helix

A metallic p-wave magnet with commensurate spin helix

  • Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar 

  • Ezawa, M. Third-order and fifth-order nonlinear spin-current generation in g-wave and i-wave altermagnets and perfectly nonreciprocal spin current in f-wave magnets. Phys. Rev. B 111, 125420 (2025).

  • Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).

  • Hirsch, J. E. Spin-split states in metals. Phys. Rev. B 41, 6820–6827 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Wu, C., Sun, K., Fradkin, E. & Zhang, S.-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).

    ADS 

    Google Scholar 

  • Jung, J., Polini, M. & MacDonald, A. H. Persistent current states in bilayer graphene. Phys. Rev. B 91, 155423 (2015).

    ADS 

    Google Scholar 

  • Kiselev, E. I., Scheurer, M. S., Wölfle, P. & Schmalian, J. Limits on dynamically generated spin-orbit coupling: absence of l = 1 Pomeranchuk instabilities in metals. Phys. Rev. B 95, 125122 (2017).

    ADS 

    Google Scholar 

  • Wu, Y.-M., Klein, A. & Chubukov, A. V. Conditions for l = 1 Pomeranchuk instability in a Fermi liquid. Phys. Rev. B 97, 165101 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).

  • Jungwirth, T. et al. From superfluid 3He to altermagnets. Preprint at https://arxiv.org/abs/2411.00717 (2024).

  • Ezawa, M. Purely electrical detection of the spin-splitting vector in p-wave magnets based on linear and nonlinear conductivities. Phys. Rev. B 112, 125412 (2025).

  • Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).

    ADS 
    CAS 

    Google Scholar 

  • Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K. & Parthé, E. Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters. Acta Crystallogr. B 49, 474–478 (1993).

    ADS 

    Google Scholar 

  • Niermann, J. & Jeitschko, W. Ternary rare earth (R) transition metal aluminides R3T4Al12 (T = Ru and Os) with Gd3Ru4Al12 type structure. Z. Anorg. Allg. Chem. 628, 2549–2556 (2002).

    CAS 

    Google Scholar 

  • Nakamura, S. et al. Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted kagome lattice structure. Phys. Rev. B 98, 054410 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Matsumura, T., Ozono, Y., Nakamura, S., Kabeya, N. & Ochiai, A. Helical ordering of spin trimers in a distorted kagomé lattice of Gd3Ru4Al12 studied by resonant X-ray diffraction. J. Phys. Soc. Jpn 88, 023704 (2019).

    ADS 

    Google Scholar 

  • Lovesey, S. W. & Collins, S. P. X-ray Scattering and Absorption by Magnetic Materials Oxford Series on Synchrotron Radiation No. 1 (Clarendon Press, Oxford Univ. Press, 1996).

  • McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    ADS 

    Google Scholar 

  • Okumura, S., Kato, Y. & Motome, Y. Lock-in of a chiral soliton lattice by itinerant electrons. J. Phys. Soc. Jpn 87, 033708 (2018).

    ADS 

    Google Scholar 

  • Hodt, E. W., Bentmann, H. & Linder, J. Fate of p-wave spin polarization in helimagnets with Rashba spin-orbit coupling. Phys. Rev. B 111, 205416 (2025)

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    ADS 

    Google Scholar 

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

    CAS 

    Google Scholar 

  • Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    ADS 

    Google Scholar 

  • Hedayati, A. A. & Salehi, M. Transverse spin current at normal-metal /p-wave magnet junctions. Phys. Rev. B 111, 035404 (2025).

  • Álvarez Pari, N. A., Jaeschke-Ubiergo, R., Chakraborty, A., Šmejkal, L. & Sinova, J. Nonrelativistic linear Edelstein effect in helical EuIn2As2. Phys. Rev. B 112, 024404 (2025).

  • Choy, T. P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).

    ADS 

    Google Scholar 

  • Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

    ADS 

    Google Scholar 

  • Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    ADS 

    Google Scholar 

  • Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn 93, 114703 (2024).

    ADS 

    Google Scholar 

  • Song, Q. et al. Electrical switching of a p-wave magnet. Nature 642, 64–70 (2025).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harmon, B., Antropov, V., Liechtenstein, A., Solovyev, I. & Anisimov, V. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Yamada, R. Dataset for: A metallic p-wave magnet with commensurate spin helix. Zenodo https://doi.org/10.5281/zenodo.17035626 (2025).

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS 

    Google Scholar 

  • Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayashi, H. et al. Large anomalous Hall effect observed in the cubic-lattice antiferromagnet Mn3Sb with kagome lattice. Phys. Rev. B 108, 075140 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Zuniga-Cespedes, B. E. et al. Observation of an anomalous Hall effect in single-crystal Mn3Pt. New J. Phys. 25, 023029 (2023).

    ADS 

    Google Scholar 

  • Sürgers, C. et al. Anomalous Nernst effect in the noncollinear antiferromagnet Mn5Si3. Commun. Mater. 5, 176 (2024).


    Google Scholar 

  • Kotegawa, H. et al. Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP. npj Quantum Mater. 8, 56 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Kotegawa, H. et al. Large spontaneous Hall effect with flexible domain control in the antiferromagnetic material TaMnP. Phys. Rev. B 110, 214417 (2024).

    ADS 
    CAS 

    Google Scholar 

  • Kotegawa, H. et al. Large anomalous Hall conductivity derived from an f-electron collinear antiferromagnetic structure. Phys. Rev. Lett. 133, 106301 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-22 03:00:00

    الكاتب: Rinsuke Yamada

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-22 03:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية حصرية ومواكبة لأبرز نجوم لبنان والعالم العربي.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى