علوم وتكنولوجيا

Thalamocortical transcriptional gates coordinate memory stabilization

Thalamocortical transcriptional gates coordinate memory stabilization

Thalamocortical transcriptional gates coordinate memory stabilization

  • Yadav, N., Toader, A. & Rajasethupathy, P. Beyond hippocampus: thalamic and prefrontal contributions to an evolving memory. Neuron 112, 1045–1059 (2024).

    Article
    CAS
    PubMed

    Google Scholar

  • Agranoff, B. W. & Klinger, P. D. Puromycin effect on memory fixation in the goldfish. Science 146, 952–953 (1964).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Flexner, L. B. & Flexner, J. B. Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice. Proc. Natl Acad. Sci. USA 55, 369–374 (1966).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Squire, L. R. & Barondes, S. H. Actinomycin-D: effects on memory at different times after training. Nature 225, 649–650 (1970).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Igaz, L. M., Vianna, M. R. M., Medina, J. H. & Izquierdo, I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J. Neurosci. 22, 6781–6789 (2002).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Dash, P. K., Hochner, B. & Kandel, E. R. Injection of the cAMP-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721 (1990).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Alberini, C. M., Ghirardi, M., Metz, R. & Kandel, E. R. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in aplysia. Cell 76, 1099–1114 (1994).

    Article
    CAS
    PubMed

    Google Scholar

  • Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    Article
    CAS
    PubMed

    Google Scholar

  • Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article
    CAS
    PubMed

    Google Scholar

  • Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article
    CAS
    PubMed

    Google Scholar

  • Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).

    Article
    CAS
    PubMed

    Google Scholar

  • Bartsch, D., Casadio, A., Karl, K. A., Serodio, P. & Kandel, E. R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223 (1998).

    Article
    CAS
    PubMed

    Google Scholar

  • Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Lin, H.-W., Chen, C.-C., de Belle, J. S., Tully, T. & Chiang, A.-S. CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proc. Natl Acad. Sci. USA 118, e2100624118 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lamprecht, R. & LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54 (2004).

    Article
    CAS
    PubMed

    Google Scholar

  • Carlezon, W. A. Jr, Duman, R. S. & Nestler, E. J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Kandel, E. R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 5, 14 (2012).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

    Article
    CAS
    PubMed

    Google Scholar

  • Alberini, C. M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51–56 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006).

    Article
    CAS
    PubMed

    Google Scholar

  • Wood, M. A., Hawk, J. D. & Abel, T. Combinatorial chromatin modifications and memory storage: a code for memory? Learn. Mem. 13, 241–244 (2006).

    Article
    CAS
    PubMed

    Google Scholar

  • Coda, D. M. & Gräff, J. From cellular to fear memory: an epigenetic toolbox to remember. Curr. Opin. Neurobiol. 84, 102829 (2024).

    Article
    CAS
    PubMed

    Google Scholar

  • Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Toader, A. C. et al. Anteromedial thalamus gates the selection and stabilization of long-term memories. Cell 186, 1369–1381.e17 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Heumos, L. et al. Pertpy: an end-to-end framework for perturbation analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.08.04.606516 (2024).

  • Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Weiler, P., Lange, M., Klein, M., Pe’er, D. & Theis, F. CellRank 2: unified fate mapping in multiview single-cell data. Nat. Methods 21, 1196–1205 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S. dunce, A mutant of Drosophila deficient in learning. Proc. Natl Acad. Sci. USA 73, 1684–1688 (1976).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Davis, R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299–317 (1996).

    Article
    CAS
    PubMed

    Google Scholar

  • Quinn, W. G., Sziber, P. P. & Booker, R. The Drosophila memory mutant amnesiac. Nature 277, 212–214 (1979).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Marco, A. et al. Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble. Nat. Neurosci. 23, 1606–1617 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Santoni, G. et al. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science 385, eadg9982 (2024).

    Article
    CAS
    PubMed

    Google Scholar

  • Huentelman, M. J. et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum. Mol. Genet. 16, 1469–1477 (2007).

    Article
    CAS
    PubMed

    Google Scholar

  • Teixeira, J. R., Szeto, R. A., Carvalho, V. M. A., Muotri, A. R. & Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 11, 19 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Liu, H. et al. ASH1L mutation caused seizures and intellectual disability in twin sisters. J. Clin. Neurosci. 91, 69–74 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Stern, S., Kirst, C. & Bargmann, C. I. Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell 171, 1649–1662.e10 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Hergenreder, E. et al. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02031-z (2024).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Campbell, R. R. & Wood, M. A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 20, 133–147 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mews, P. et al. From circuits to chromatin: the emerging role of epigenetics in mental health. J. Neurosci. 41, 873–882 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Nott, A., Schlachetzki, J. C. M., Fixsen, B. R. & Glass, C. K. Nuclei isolation of multiple brain cell types for omics interrogation. Nat. Protoc. 16, 1629–1646 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Glasner, A. et al. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. Nat. Immunol. 24, 1020–1035 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yao, Z. et al. Whole mouse brain transcriptomic cell type atlas — 10x scRNAseq whole brain (dataset). NeMO https://assets.nemoarchive.org/dat-qg7n1b0 (2023).



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-11-26 02:00:00

    الكاتب: Andrea Terceros

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-11-26 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى