علوم وتكنولوجيا

Random heteropolymers as enzyme mimics

Random heteropolymers as enzyme mimics

  • Breslow, R. Artificial enzymes. Science 218, 532–537 (1982).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • DeGrado, W. F., Wasserman, Z. R. & Lear, J. D. Protein design, a minimalist approach. Science 243, 622–628 (1989).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Castriciano, M. A., Romeo, A., Baratto, M. C., Pogni, R. & Scolaro, L. M. Supramolecular mimetic peroxidase based on hemin and PAMAM dendrimers. Chem. Commun. 14, 688–690 (2008).

    Article

    Google Scholar

  • Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).

    Article
    PubMed
    CAS

    Google Scholar

  • Terashima, T. et al. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

    Article
    CAS

    Google Scholar

  • Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Nath, I., Chakraborty, J. & Verpoort, F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016).

    Article
    PubMed
    CAS

    Google Scholar

  • Liu, Q., Wang, H., Shi, X. H., Wang, Z.-G. & Ding, B. Q. Self-assembled DNA/peptide-based nanoparticle exhibiting synergistic enzymatic activity. ACS Nano 11, 7251–7258 (2017).

    Article
    PubMed
    CAS

    Google Scholar

  • Mundsinger, K., Izuagbe, A., Tuten, B. T., Roesky, P. W. & Barner-Kowollik, C. Single chain nanoparticles in catalysis. Angew. Chem. Int. Ed. 63, e202311734 (2024).

    Article
    CAS

    Google Scholar

  • Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article
    PubMed

    Google Scholar

  • Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Rose, G. D., Fleming, P. J., Banavar, J. R. & Maritan, A. A backbone-based theory of protein folding. Proc. Natl Acad. Sci. USA 103, 16623–16633 (2006).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Magazù, S. et al. Protein dynamics as seen by (quasi) elastic neutron scattering. Biochim. Biophys. Acta Gen. Subj. 1861, 3504–3512 (2017).

    Article
    PubMed

    Google Scholar

  • Robertson, D. E. et al. Design and synthesis of multi-haem proteins. Nature 368, 425–432 (1994).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Hilburg, S. L., Ruan, Z., Xu, T. & Alexander-Katz, A. Behavior of protein-inspired synthetic random heteropolymers. Macromolecules 53, 9187–9199 (2020).

    Article
    ADS
    CAS

    Google Scholar

  • Jiang, T. et al. Single-chain heteropolymers transport protons selectively and rapidly. Nature 577, 216–220 (2020).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Daghrir, R. & Drogui, P. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227 (2013).

    Article
    CAS

    Google Scholar

  • Dill, K. A. et al. Principles of protein folding — a perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Ruan, Z. et al. Population-based heteropolymer design to mimic protein mixtures. Nature 615, 251–258 (2023).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Artar, M., Souren, E. R. J., Terashima, T., Meijer, E. W. & Palmans, A. R. A. Single chain polymeric nanoparticles as selective hydrophobic reaction spaces in water. ACS Macro Lett. 4, 1099–1103 (2015).

    Article
    PubMed
    CAS

    Google Scholar

  • Hoshino, Y. et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl Acad. Sci. USA 109, 33–38 (2012).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Popot, J.-L. et al. Amphipols from A to Z. Annu. Rev. Biophys. 40, 379–408 (2011).

    Article
    PubMed
    CAS

    Google Scholar

  • Chakraborty, A. K. & Shakhnovich, E. I. Phase behavior of random copolymers in quenched random media. J. Chem. Phys. 103, 10751–10763 (1995).

    Article
    ADS
    CAS

    Google Scholar

  • Geissler, P. L. & Shakhnovich, E. I. Mechanical response of random heteropolymers. Macromolecules 35, 4429–4436 (2002).

    Article
    ADS
    CAS

    Google Scholar

  • Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Koshland, D. E. Jr The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 33, 2375–2378 (1995).

    Article

    Google Scholar

  • Jayapurna, I. et al. Sequence design of random heteropolymers as protein mimics. Biomacromolecules 24, 652–660 (2023).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Hoshino, T. & Sato, T. Squalene–hopene cyclase: catalytic mechanism and substrate recognition. Chem. Commun. 4, 291–301 (2002).

    Article

    Google Scholar

  • Moffet, D. A. et al. Peroxidase activity in heme proteins derived from a designed combinatorial library. J. Am. Chem. Soc. 122, 7612–7613 (2000).

    Article
    ADS
    CAS

    Google Scholar

  • Walker, F. A. Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. Chem. Rev. 104, 589–616 (2004).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Tronnet, A. et al. Star-like polypeptides as simplified analogues of horseradish peroxidase (HRP) metalloenzymes. Macromol. Biosci. 24, 2400155–2400155 (2024).

    Article
    CAS

    Google Scholar

  • Yu, H. et al. Mapping composition evolution through synthesis, purification, and depolymerization of random heteropolymers. J. Am. Chem. Soc. 146, 6178–6188 (2024).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Arbe, A., Colmenero, J., Monkenbusch, M. & Richter, D. Dynamics of glass-forming polymers: “homogeneous” versus “heterogeneous” scenario. Phys. Rev. Lett. 81, 590–593 (1998).

    Article
    ADS
    CAS

    Google Scholar

  • Hart-Cooper, W. M., Clary, K. N., Toste, F. D., Bergman, R. G. & Raymond, K. N. Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Hammer, S. C., Marjanovic, A., Dominicus, J. M., Nestl, B. M. & Hauer, B. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11, 121–126 (2015).

    Article
    PubMed
    CAS

    Google Scholar

  • Gibney, B. R. & Dutton, P. L. Histidine placement in de novo–designed heme proteins. Protein Sci. 8, 1888–1898 (1999).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Walker, F. A., Reis, D. & Balke, V. L. Models of the cytochromes b. 5. EPR studies of low-spin iron(III) tetraphenylporphyrins. J. Am. Chem. Soc. 106, 6888–6898 (1984).

    Article
    ADS
    CAS

    Google Scholar

  • Murphy, E. A. et al. High-throughput generation of block copolymer libraries via click chemistry and automated chromatography. Macromolecules 58, 8369–8376 (2025).

    Article
    ADS
    CAS

    Google Scholar

  • Cochran, A. G. & Schultz, P. G. Peroxidase-activity of an antibody heme complex. J. Am. Chem. Soc. 112, 9414–9415 (1990).

    Article
    ADS
    CAS

    Google Scholar

  • Tracy, T. S. Atypical cytochrome P450 kinetics. Drugs R D 7, 349–363 (2006).

    Article
    PubMed
    CAS

    Google Scholar

  • Wu, G.-R. et al. Efficient degradation of tetracycline antibiotics by engineered myoglobin with high peroxidase activity. Molecules 27, 8660 (2022).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Jaacks, V. A novel method of determination of reactivity ratios in binary and ternary copolymerizations. Makromolek. Chem. 161, 161–172 (1972).

    Article
    CAS

    Google Scholar

  • Flynn, P. F., Mattiello, D. L., Hill, H. D. W. & Wand, A. J. Optimal use of cryogenic probe technology in NMR studies of proteins. J. Am. Chem. Soc. 122, 4823–4824 (2000).

    Article
    ADS
    CAS

    Google Scholar

  • Andreini, C., Cavallaro, G., Lorenzini, S. & Rosato, A. MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 41, D312–D319 (2013).

    Article
    PubMed
    CAS

    Google Scholar

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article
    PubMed
    CAS

    Google Scholar

  • Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article
    ADS
    PubMed

    Google Scholar

  • Shu, J. Y. et al. Amphiphilic peptide−polymer conjugates based on the coiled-coil helix bundle. Biomacromolecules 11, 1443–1452 (2010).

    Article
    PubMed
    CAS

    Google Scholar



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-12-31 02:00:00

    الكاتب: Hao Yu

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-12-31 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى