علوم وتكنولوجيا

N1Methylpseudouridine directly modulates translation dynamics

  • Saxena, S. et al. The future of mRNA vaccines: potential beyond COVID-19. Cureus 17, e84529 (2025).

    PubMed
    PubMed Central

    Google Scholar

  • Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2′−5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329–9338 (2011).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article
    PubMed

    Google Scholar

  • Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    Article
    PubMed
    CAS

    Google Scholar

  • Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Bérouti, M. et al. Pseudouridine RNA avoids immune detection through impaired endolysosomal processing and TLR engagement. Cell 188, 4880–4895 (2025).

    Article
    PubMed

    Google Scholar

  • Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol. Sci. 43, 522–535 (2022).

    Article
    PubMed
    CAS

    Google Scholar

  • Mulroney, T. E. et al. N-Methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625, 189–194 (2024).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Svitkin, Y. V. et al. N1-Methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 45, 6023–6036 (2017).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Svitkin, Y. V., Gingras, A.-C. & Sonenberg, N. Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Res. 50, 7202–7215 (2022).

    Article
    PubMed
    CAS

    Google Scholar

  • Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Monroe, J. et al. N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation. Nat. Commun. 15, 8119 (2024).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Baiersdörfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Naylor, R., Ho, N. W. & Gilham, P. T. Selective chemical modifications of uridine and pseudouridine in polynucleotides and their effect on the specificities of ribonuclease and phosphodiesterases. J. Am. Chem. Soc. 87, 4209–4210 (1965).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife 4, e05033 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Karijolich, J. & Yu, Y.-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Fernández, I. S. et al. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500, 107–110 (2013).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Adachi, H. & Yu, Y.-T. Pseudouridine-mediated stop codon readthrough in is sequence context-independent. RNA 26, 1247–1256 (2020).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Rajan, K. S. et al. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep. 43, 114203 (2024).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Cappannini, A. et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 52, D239–D244 (2023).

    Article
    PubMed Central

    Google Scholar

  • Holm, M. et al. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 617, 200–207 (2023).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Milicevic, N., Jenner, L., Myasnikov, A., Yusupov, M. & Yusupova, G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 625, 393–400 (2023).

    Article
    ADS
    PubMed

    Google Scholar

  • Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012).

    Article
    ADS
    PubMed
    CAS

    Google Scholar

  • Davis, D. R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).

    Article
    PubMed
    CAS

    Google Scholar

  • Sokoloski, J. E., Godfrey, S. A., Dombrowski, S. E. & Bevilacqua, P. C. Prevalence of syn nucleobases in the active sites of functional RNAs. RNA 17, 1775–1787 (2011).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Sonenberg, N., Hershey, J. W. B. & Mathews, M. B. Translational Control of Gene Expression (CSHL Press, 2001).

  • Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Zu, T. et al. Metformin inhibits RAN translation through PKR pathway and mitigates disease in ALS/FTD mice. Proc. Natl Acad. Sci. USA 117, 18591–18599 (2020).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Lewis, C. J. T. et al. Quantitative profiling of human translation initiation reveals elements that potently regulate endogenous and therapeutically modified mRNAs. Mol. Cell https://doi.org/10.1016/j.molcel.2024.11.030 (2024).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • von der Haar, T. et al. Translation of in vitro-transcribed RNA therapeutics. Front. Mol. Biosci. 10, 1128067 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Jiang, Y. et al. Quantitating endosomal escape of a library of polymers for mRNA delivery. Nano Lett. 20, 1117–1123 (2020).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Yanagiya, A. et al. Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol. Cell 46, 847–858 (2012).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Diamond, P. D., McGlincy, N. J. & Ingolia, N. T. Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol. Cell 84, 2119–2134 (2024).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Yanagiya, A. et al. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol. Cell. Biol. 29, 1661–1669 (2009).

    Article
    PubMed
    CAS

    Google Scholar

  • Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Hia, F. et al. Codon bias confers stability to human mRNAs. EMBO Rep. 20, e48220 (2019).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article
    PubMed
    CAS

    Google Scholar

  • Erdmann-Pham, D. D., Dao Duc, K. & Song, Y. S. The key parameters that govern translation efficiency. Cell Syst. 10, 183–192 (2020).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Lyons, E. F. et al. Translation elongation as a rate limiting step of protein production. Preprint at bioRxiv https://doi.org/10.1101/2023.11.27.568910 (2024).

  • Barrington, C. L. et al. Synonymous codon usage regulates translation initiation. Cell Rep. 42, 113413 (2023).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Bonderoff, J. M. & Lloyd, R. E. Time-dependent increase in ribosome processivity. Nucleic Acids Res. 38, 7054–7067 (2010).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Afonina, Z. A., Myasnikov, A. G., Shirokov, V. A., Klaholz, B. P. & Spirin, A. S. Conformation transitions of eukaryotic polyribosomes during multi-round translation. Nucleic Acids Res. 43, 618–628 (2015).

    Article
    PubMed
    CAS

    Google Scholar

  • Rajan, K. S. et al. Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei. J. Biol. Chem. 298, 102141 (2022).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article
    PubMed

    Google Scholar

  • Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article
    PubMed
    CAS

    Google Scholar

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article
    ADS
    PubMed
    PubMed Central
    CAS

    Google Scholar

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article
    PubMed
    CAS

    Google Scholar

  • Leonarski, F., Henning-Knechtel, A., Kirmizialtin, S., Ennifar, E. & Auffinger, P. Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure—Part I: Mg2+. Nucleic Acids Res. 53, gkae1148 (2025).

    Article
    PubMed

    Google Scholar

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article
    ADS
    CAS

    Google Scholar

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article
    PubMed
    CAS

    Google Scholar

  • Tirosh, O. et al. The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog. 11, e1005288 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Erhard, F. et al. Improved Ribo-seq enables identification of cryptic translation events. Nat. Methods 15, 363–366 (2018).

    Article
    PubMed
    PubMed Central
    CAS

    Google Scholar



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2026-01-14 02:00:00

    الكاتب: Batsheva Rozman

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2026-01-14 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى