علوم وتكنولوجيا

Integrated lithium niobate photonics for sub-ångström snapshot spectroscopy

Integrated lithium niobate photonics for sub-ångström snapshot spectroscopy

  • Berné, O. et al. A far-ultraviolet–driven photoevaporation flow observed in a protoplanetary disk. Science 383, 988–992 (2024).

    Article
    ADS
    PubMed

    Google Scholar

  • Climent, J. B., Guirado, J. C., Pérez-Torres, M., Marcaide, J. M. & Peña-Moñino, L. Evidence for a radiation belt around a brown dwarf. Science 381, 1120–1124 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Currie, T. et al. Direct imaging and astrometric detection of a gas giant planet orbiting an accelerating star. Science 380, 198–203 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • You, B. et al. Observations of a black hole X-ray binary indicate formation of a magnetically arrested disk. Science 381, 961–964 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Roberts, O. J. et al. Rapid spectral variability of a giant flare from a magnetar in NGC 253. Nature 589, 207–210 (2021).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cutrale, F. et al. Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14, 149–152 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Bartczak, P. et al. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging. Opt. Rev. 24, 105–116 (2017).

    Article

    Google Scholar

  • Dale, L. M. et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl. Spectrosc. Rev. 48, 142–159 (2013).

    Article
    ADS
    CAS

    Google Scholar

  • Dai, Y. et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615, 280–284 (2023).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    Article
    ADS

    Google Scholar

  • Aartsen, M. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article
    ADS

    Google Scholar

  • Akimov, D. et al. Observation of coherent elastic neutrino-nucleus scattering. Science 357, 1123–1126 (2017).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Kimble, R. A. et al. The on-orbit performance of the space telescope imaging spectrograph. Astrophys. J. 492, L83 (1998).

    Article
    ADS

    Google Scholar

  • Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    Article
    ADS

    Google Scholar

  • Smee, S. A. et al. The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Astron. J. 146, 32 (2013).

  • Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P. & Deng, L.-C. LAMOST spectral survey—An overview. Res. Astron. Astrophys. 12, 723 (2012).

    Article
    ADS

    Google Scholar

  • Brady, D. J. Optical Imaging and Spectroscopy (Wiley, 2009).

  • Newman, J. A. et al. Spectroscopic needs for imaging dark energy experiments. Astropart. Phys. 63, 81–100 (2015).

    Article
    ADS

    Google Scholar

  • Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Du, X. et al. A microspectrometer with dual-signal spectral reconstruction. Nat. Electron. 7, 984–990 (2024).

  • Redding, B. et al. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).

    Article
    ADS
    CAS

    Google Scholar

  • Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Tack, N., Lambrechts, A., Soussan, P. & Haspeslagh, L. A compact, high-speed and low-cost hyperspectral imager. In Proc. SPIE Conference Series, Silicon Photonics VII, Vol. 8266 (eds Kubby, J. & Reed, G. T.) 16 (SPIE, 2012).

  • Geelen B. et al. A tiny VIS-NIR snapshot multispectral camera. In Proc. SPIE Conference Series, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII, Vol. 9374 (eds van Freymann, G. et al.) 194–201 (SPIE, 2015).

  • Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photon. 18, 967–974 (2024).

    Article
    ADS
    CAS

    Google Scholar

  • Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nat. Photon. 17, 218–223 (2023).

    Article
    ADS
    CAS

    Google Scholar

  • Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).

    Article
    ADS
    CAS

    Google Scholar

  • Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Behmann, J. et al. Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 18, 441 (2018).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Jeon, D. S. et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. 38, 117 (2019).

    Article

    Google Scholar

  • Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photonics 6, 2161–2167 (2019).

    Article
    CAS

    Google Scholar

  • Yao, C. et al. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light: Sci. Appl. 12, 156 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Xu, Y., Lu, L., Saragadam, V. & Kelly, K. F. A compressive hyperspectral video imaging system using a single-pixel detector. Nat. Commun. 15, 1456 (2024).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yuan, X., Brady, D. J. & Katsaggelos, A. K. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Trans. Signal Process. 69, 5406–5418 (2021).


    Google Scholar

  • Shi, Z. et al. Learned multi-aperture color-coded optics for snapshot hyperspectral imaging. ACM Trans. Graph. 43, 208 (2024).

    Article

    Google Scholar

  • Lin, X., Wetzstein, G., Liu, Y. & Dai, Q. Dual-coded compressive hyper-spectral imaging. Opt. Lett. 39, 2044–2047 (2014).

    Article
    ADS
    PubMed

    Google Scholar

  • Li, S. et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light: Sci. Appl. 10, 88 (2021).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhang, W. et al. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat. Commun. 14, 5043 (2023).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wu, J. et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature 612, 62–71 (2022).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • He, K. et al. Masked autoencoders are scalable vision learners. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 15979–15988 (IEEE, 2021).

  • Yao, Z., Liu, S., Yuan, X. & Fang, L. SPECAT: spatial-spectral cumulative-attention transformer for high-resolution hyperspectral image reconstruction. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 25368–25377 (IEEE, 2024).

  • Yuan, X. et al. A modular hierarchical array camera. Light: Sci. Appl. 10, 37 (2021).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).

    Article

    Google Scholar

  • Srinivas, M. & Patnaik, L. M. Genetic algorithms: a survey. Computer 27, 17–26 (1994).

    Article

    Google Scholar

  • Arad, Y. & Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural RGB images. In Proc. European Conference on Computer Vision (eds Leibe, B. et al.) 19–34 (Springer, 2016).

  • Arad, M., Ben-Zvi, Y., Ben-Shahar, O. & Hel-Or, H. NTIRE 2022 spectral recovery challenge and data set. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 863–881 (IEEE, 2022).

  • Abdurro’uf, et al.The 17th Data Release of the Sloan Digital Sky Surveys: SDSS-IV. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article
    ADS

    Google Scholar

  • Yao, Z. Data used in ‘Integrated lithium niobate photonics for sub-angstrom snapshot spectroscopy’. Zenodo https://doi.org/10.5281/zenodo.16936676 (2025).



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-15 03:00:00

    الكاتب: Zhiyang Yao

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-15 03:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية حصرية ومواكبة لأبرز نجوم لبنان والعالم العربي.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى