علوم وتكنولوجيا

Building wet planets through high

Building wet planets through high

  • Fulton, B. J. et al. The California-Keplersurvey. III. A gap in the radius distribution of smallplanets.Astron. J.154, 109 (2017).

    ADS 

    Google Scholar
     

  • Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets.J. Geophys. Res. Planets126, e2020JE006639 (2021).

    J. و The و of - تفاصيل مهمة

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitsch, B. et al. Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line.Astron. Astrophys.649, L5 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen–silane–water envelopes.Mon. Not. R. Astron. Soc.524, 981–992 (2023).

    water و the و of - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution.Planet. Sci. J.3, 127 (2022).


    Google Scholar
     

  • Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth.Meteorit. Planet. Sci.35, 1309–1320 (2000).

    and و E. و of - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Ikoma, M. & Genda, H. Constraints on the mass of a habitable planet with water of nebular origin.Astrophys. J.648, 696 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle.Science350, 795–797 (2015).

    of و water و J. - تفاصيل مهمة

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2atmospheres.Nature616, 306–311 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars fromKepler.Astrophys. J. Suppl. Ser.201, 15 (2012).

    E. و A. و Young, - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Owen, J. E. & Wu, Y.Keplerplanets: a tale of evaporation.Astrophys. J.775, 105 (2013).

    ADS 

    Google Scholar
     

  • Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets.Mon. Not. R. Astron. Soc.476, 759–765 (2018).

    J. و E. و & - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Zeng, L. et al. Growth model interpretation of planet size distribution.Proc. Natl Acad. Sci. USA116, 9723–9728 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment expected from formation models.Astron. Astrophys.634, A31 (2020).

    Zeng, و L. و et - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars.Science377, 1211–1214 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet.Nat. Astron.7, 206–222 (2022).

    (2022). و Luque, و R. - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “Steam World” atmosphere of GJ 9827 d.Astrophys. J. Lett.974, L10 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets.Earth Planet. Sci. Lett.345, 38–48 (2012).

    of و Lett. و Piaulet-Ghorayeb, - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-neptunes explained by fugacity crisis.Astrophys. J. Lett.887, L33 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Sabat, K. C., Rajput, P., Paramguru, R. K., Bhoi, B. & Mishra, B. K. Reduction of oxide minerals by hydrogen plasma: an overview.Plasma Chem. Plasma Process.34, 1–23 (2014).

    B. و E. و & - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs.Nat. Astron.6, 1296–1307 (2022).

    ADS 

    Google Scholar
     

  • Krissansen-Totton, J., Wogan, N., Thompson, M. & Fortney, J. J. The erosion of large primary atmospheres typically leaves behind substantial secondary atmospheres on temperate rocky planets.Nat. Commun.15, 8374 (2024).

    & و M. و of - تفاصيل مهمة

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, H. W., Prakapenka, V., Chariton, S., Speziale, S. & Shim, S.-H. Reaction between hydrogen and ferrous/ferric oxides athighpressures and high temperatures—implications for sub-neptunes and super-earths.Planet. Sci. J.4, 30 (2023).

    CAS 

    Google Scholar
     

  • Kim, T. et al. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres.Proc. Natl Acad. Sci. USA120, e2309786120 (2023).

    and و high و Sci. - تفاصيل مهمة

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinozaki, A. et al. Influence of H2fluid on the stability and dissolution of Mg2SiO4forsterite under highpressureand high temperature.Am. Mineral.98, 1604–1609 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Shinozaki, A. et al. Formation of SiH4and H2O by the dissolution of quartz in H2fluid under high pressure and temperature.Am. Mineral.99, 1265–1269 (2014).

    of و and و high - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Stökl, A., Dorfi, E. A., Johnstone, C. P. & Lammer, H. Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5Min the habitable zone.Astrophys. J.825, 86 (2016).

    ADS 

    Google Scholar
     

  • Vazan, A., Ormel, C. W., Noack, L. & Dominik, C. Contribution of the core to the thermal evolution of sub-Neptunes.Astrophys. J.869, 163 (2018).

    A., و C. و of - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Goncharov, A. F. et al. X-ray diffraction in the pulsed laser heated diamond anvil cell.Rev. Sci. Instrum.81, 113902 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures.J. Geophys. Res. Solid Earth100, 17699–17713 (1995).

    of و Goncharov, و A. - تفاصيل مهمة

    CAS 

    Google Scholar
     

  • Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors.Astrophys. J. Lett.982, L35 (2025).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, T. et al. Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets.Nat. Astron.5, 815–821 (2021).

    and و of و in - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle.Earth Planet. Sci. Lett.236, 167–181 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Karki, B. B., Ghosh, D. B. & Bajgain, S. K. inMagmas Under Pressure419–453 (Elsevier, 2018).

    in و C. و & - تفاصيل مهمة

  • Putirka, K. D. & Xu, S. Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood.Nat. Commun.12, 6168 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets.Astrophys. J.914, 84 (2021).

    ADS 
    CAS 

    Google Scholar
     

    ADS  و CAS  و Google - تفاصيل مهمة

  • Vazan, A., Sari, R. & Kessel, R. A new perspective on the interiors of ice-rich planets: ice-rock mixture instead of ice on top of rock.Astrophys. J.926, 150 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Luo, H., Dorn, C. & Deng, J. The interior as the dominant water reservoir in super-Earths and sub-Neptunes.Nat. Astron.8, 1399–1407 (2024).

    ADS 

    Google Scholar
     

    ADS  و Google و Scholar  - تفاصيل مهمة

  • Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley: hints from formation and evolution models.Astron. Astrophys.643, L1 (2020).

    ADS 

    Google Scholar
     

  • Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores.Nat. Astron.8, 463–471 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    ADS  و Google و Scholar  - تفاصيل مهمة

  • Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of hycean worlds.Astrophys. J.918, 1 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Cherubim, C. et al. TOI-1695 b: a water world orbiting an early-M dwarf in the planet radius valley.Astron. J.165, 167 (2023).

    ADS 

    Google Scholar
     

    ADS  و Google و Scholar  - تفاصيل مهمة

  • Osborne, H. L. M. et al. TOI-544 b: a potential water-world inside the radius valley in a two-planet system.Mon. Not. R. Astron. Soc.527, 11138–11157 (2023).

    ADS 

    Google Scholar
     

  • Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains.Astrophys. J. Lett.939, L19 (2022).

    ADS 

    Google Scholar
     

    ADS  و Google و Scholar  - تفاصيل مهمة

  • Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the pressure dependence of theR1ruby fluorescence line to 195 kbar.J. Appl. Phys.46, 2774–2780 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • Prakapenka, V. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium.High Press. Res.28, 225–235 (2008).

    ADS 
    CAS 

    Google Scholar
     

    ADS  و CAS  و Google - تفاصيل مهمة

  • Deemyad, S. et al. Pulsed laser heating and temperature determination in a diamond anvil cell.Rev. Sci. Instrum.76, 125104 (2005).

    ADS 

    Google Scholar
     

  • Fu, S., Chariton, S., Prakapenka, V. B., Chizmeshya, A. & Shim, S.-H. Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K.Phys. Rev. B105, 104111 (2022).

    ADS 
    CAS 

    Google Scholar
     

    ADS  و Google و Scholar  - تفاصيل مهمة

  • Fu, S., Chariton, S., Prakapenka, V. B. & Shim, S.-H. Core origin of seismic velocity anomalies at Earth’s core–mantle boundary.Nature615, 646–651 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulka, B. L., Dolinschi, J. D., Leinenweber, K. D., Prakapenka, V. B. & Shim, S.-H. The bridgmanite–akimotoite–majorite triple point determined in large volume press and laser-heated diamond anvil cell.Minerals10, 67 (2020).

    ADS 
    CAS 

    Google Scholar
     

    ADS  و CAS  و Google - تفاصيل مهمة

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration.High Press. Res.35, 223–230 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Shim, S.-H. PeakPo: a python software for x-ray diffraction analysis at high pressure and high temperature.Zenodohttps://doi.org/10.5281/zenodo.3376238 (2019).

  • Ye, Y., Prakapenka, V., Meng, Y. & Shim, S.-H. Intercomparison of the gold, platinum, and MgO pressure scales up to 140 GPa and 2500 K.J. Geophys. Res. Solid Earth122, 3450–3464 (2017).

    and و Shim, و S.-H. - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond–anvil cell.Rev. Sci. Instrum.69, 2421–2426 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS.High Press. Res.39, 457–470 (2019).

    & و Dewaele, و A., - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Vazan, A., Helled, R., Kovetz, A. & Podolak, M. Convection and mixing in giant planet evolution.Astrophys. J.803, 32 (2015).

    ADS 

    Google Scholar
     

  • Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets.Astrophys. J. Suppl. Ser.99, 713 (1995).

    & و M. و and - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Vazan, A., Kovetz, A., Podolak, M. & Helled, R. The effect of composition on the evolution of giant and intermediate-mass planets.Mon. Not. R. Astron. Soc.434, 3283–3292 (2013).

    ADS 

    Google Scholar
     

  • Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures.Astrophys. J. Suppl. Ser.214, 25 (2014).

    R. و of و and - تفاصيل مهمة

    ADS 

    Google Scholar
     

  • Shim, S.-H. Experimental data for hydrogen-silicate reaction (Data set).Zenodohttps://doi.org/10.5281/zenodo.15586691 (2025).

  • Shim, S.-H. Jupyter notebooks for Supplementary Codes (0.0.1).Zenodohttps://doi.org/10.5281/zenodo.15678598 (2025).

  • Sakamaki, K. et al. Melting phase relation of FeHxup to 20 GPa: implication for the temperature of the Earth’s core.Phys. Earth Planet. Interiors174, 192–201 (2009).

    for و Shim, و S.-H. - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite.J. Geophys. Res. Solid Earth112, B06208 (2007).

    ADS 

    Google Scholar
     

  • Ohtani, E. Melting relation of Fe2SiO4up to about 200 kbar.J. Phys. Earth27, 189–208 (1979).

    J. و of و to - تفاصيل مهمة

    CAS 

    Google Scholar
     

  • Andrault, D. et al. Melting behavior of SiO2up to 120 GPa.Phys. Chem. Miner.47, 10 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zha, C., Liu, H., Tse, J. S. & Hemley, R. J. Melting and highPTtransitions of hydrogen up to 300 GPa.Phys. Rev. Lett.119, 075302 (2017).

    Melting و of و up - تفاصيل مهمة

    PubMed 

    Google Scholar
     

  • Narygina, O. et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core.Earth Planet. Sci. Lett.307, 409–414 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Thompson, E. et al. High-pressure geophysical properties of fcc phase FeHX.Geochem. Geophys. Geosyst.19, 305–314 (2018).

    of و et و al. - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Kato, C. et al. Stability of fcc phase FeH to 137 GPa.Am. Mineral.105, 917–921 (2020).

    ADS 

    Google Scholar
     

  • Tagawa, S., Gomi, H., Hirose, K. & Ohishi, Y. High-temperature equation of state of FeH: implications for hydrogen in Earth’s inner core.Geophys. Res. Lett.49, e2021GL096260 (2022).

    of و Kato, و C. - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Ikuta, D. et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core.Sci. Rep.9, 7108 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibazaki, Y. et al. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy.Phys. Earth Planet. Inter.228, 192–201 (2014).

    et و al. و in - تفاصيل مهمة

    ADS 
    CAS 

    Google Scholar
     

  • Ohta, K., Suehiro, S., Hirose, K. & Ohishi, Y. Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures.Comptes Rendus Geosci.351, 147–153 (2019).

    ADS 

    Google Scholar
     

  • Dorogokupets, P. I., Dymshits, A. M., Litasov, K. D. & Sokolova, T. S. Thermodynamics and equations of state of iron to 350 GPa and 6000 K.Sci. Rep.7, 41863 (2017).

    K. و of و and - تفاصيل مهمة

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piet, H. et al. Superstoichiometric alloying of H and close-packed Fe-Ni metal under high pressures: implications for hydrogen storage in planetary core.Geophys. Res. Lett.50, e2022GL101155 (2023).

    ADS 
    CAS 

    Google Scholar
     



  • ■ مصدر الخبر الأصلي

    Piet, و H. و et - تفاصيل مهمة

    نشر لأول مرة على:www.nature.com

    تاريخ النشر:2025-10-29 02:00:00

    الكاتب:H. W. Horn

    تنويه من موقع “yalebnan.org”:

    تاريخ و النشر: و 2025-10-29 - تفاصيل مهمة

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ:2025-10-29 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة:قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    Building wet planets through high
    <b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1: Laser-heated diamond-anvil cell experiments on silicate melts in a hydrogen medium.</b>
    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243s64038dmm038rg
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية ة ومواكبة لأبرز نجوم لبنان والعالم العربي.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى