Building wet planets through high

Fulton, B. J. et al. The California-Keplersurvey. III. A gap in the radius distribution of smallplanets.Astron. J.154, 109 (2017).
ADS
Google Scholar
Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets.J. Geophys. Res. Planets126, e2020JE006639 (2021).
J. و The و of - تفاصيل مهمة
ADS
PubMed
PubMed Central
Google Scholar
Bitsch, B. et al. Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line.Astron. Astrophys.649, L5 (2021).
ADS
CAS
Google Scholar
Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen–silane–water envelopes.Mon. Not. R. Astron. Soc.524, 981–992 (2023).
water و the و of - تفاصيل مهمة
ADS
CAS
Google Scholar
Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution.Planet. Sci. J.3, 127 (2022).
Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth.Meteorit. Planet. Sci.35, 1309–1320 (2000).
and و E. و of - تفاصيل مهمة
ADS
CAS
Google Scholar
Ikoma, M. & Genda, H. Constraints on the mass of a habitable planet with water of nebular origin.Astrophys. J.648, 696 (2006).
ADS
CAS
Google Scholar
Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle.Science350, 795–797 (2015).
of و water و J. - تفاصيل مهمة
ADS
CAS
PubMed
Google Scholar
Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2atmospheres.Nature616, 306–311 (2023).
ADS
CAS
PubMed
Google Scholar
Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars fromKepler.Astrophys. J. Suppl. Ser.201, 15 (2012).
E. و A. و Young, - تفاصيل مهمة
ADS
Google Scholar
Owen, J. E. & Wu, Y.Keplerplanets: a tale of evaporation.Astrophys. J.775, 105 (2013).
ADS
Google Scholar
Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets.Mon. Not. R. Astron. Soc.476, 759–765 (2018).
J. و E. و & - تفاصيل مهمة
ADS
CAS
Google Scholar
Zeng, L. et al. Growth model interpretation of planet size distribution.Proc. Natl Acad. Sci. USA116, 9723–9728 (2019).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment expected from formation models.Astron. Astrophys.634, A31 (2020).
Zeng, و L. و et - تفاصيل مهمة
ADS
CAS
Google Scholar
Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars.Science377, 1211–1214 (2022).
ADS
CAS
PubMed
Google Scholar
Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet.Nat. Astron.7, 206–222 (2022).
(2022). و Luque, و R. - تفاصيل مهمة
ADS
Google Scholar
Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “Steam World” atmosphere of GJ 9827 d.Astrophys. J. Lett.974, L10 (2024).
ADS
CAS
Google Scholar
Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets.Earth Planet. Sci. Lett.345, 38–48 (2012).
of و Lett. و Piaulet-Ghorayeb, - تفاصيل مهمة
ADS
Google Scholar
Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-neptunes explained by fugacity crisis.Astrophys. J. Lett.887, L33 (2019).
ADS
CAS
Google Scholar
Sabat, K. C., Rajput, P., Paramguru, R. K., Bhoi, B. & Mishra, B. K. Reduction of oxide minerals by hydrogen plasma: an overview.Plasma Chem. Plasma Process.34, 1–23 (2014).
B. و E. و & - تفاصيل مهمة
ADS
CAS
Google Scholar
Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs.Nat. Astron.6, 1296–1307 (2022).
ADS
Google Scholar
Krissansen-Totton, J., Wogan, N., Thompson, M. & Fortney, J. J. The erosion of large primary atmospheres typically leaves behind substantial secondary atmospheres on temperate rocky planets.Nat. Commun.15, 8374 (2024).
& و M. و of - تفاصيل مهمة
ADS
CAS
PubMed
PubMed Central
Google Scholar
Horn, H. W., Prakapenka, V., Chariton, S., Speziale, S. & Shim, S.-H. Reaction between hydrogen and ferrous/ferric oxides athighpressures and high temperatures—implications for sub-neptunes and super-earths.Planet. Sci. J.4, 30 (2023).
CAS
Google Scholar
Kim, T. et al. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres.Proc. Natl Acad. Sci. USA120, e2309786120 (2023).
and و high و Sci. - تفاصيل مهمة
CAS
PubMed
PubMed Central
Google Scholar
Shinozaki, A. et al. Influence of H2fluid on the stability and dissolution of Mg2SiO4forsterite under highpressureand high temperature.Am. Mineral.98, 1604–1609 (2013).
ADS
CAS
Google Scholar
Shinozaki, A. et al. Formation of SiH4and H2O by the dissolution of quartz in H2fluid under high pressure and temperature.Am. Mineral.99, 1265–1269 (2014).
of و and و high - تفاصيل مهمة
ADS
Google Scholar
Stökl, A., Dorfi, E. A., Johnstone, C. P. & Lammer, H. Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5M⊕in the habitable zone.Astrophys. J.825, 86 (2016).
ADS
Google Scholar
Vazan, A., Ormel, C. W., Noack, L. & Dominik, C. Contribution of the core to the thermal evolution of sub-Neptunes.Astrophys. J.869, 163 (2018).
A., و C. و of - تفاصيل مهمة
ADS
CAS
Google Scholar
Goncharov, A. F. et al. X-ray diffraction in the pulsed laser heated diamond anvil cell.Rev. Sci. Instrum.81, 113902 (2010).
ADS
PubMed
Google Scholar
Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures.J. Geophys. Res. Solid Earth100, 17699–17713 (1995).
of و Goncharov, و A. - تفاصيل مهمة
CAS
Google Scholar
Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors.Astrophys. J. Lett.982, L35 (2025).
ADS
CAS
Google Scholar
Kim, T. et al. Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets.Nat. Astron.5, 815–821 (2021).
and و of و in - تفاصيل مهمة
ADS
Google Scholar
Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle.Earth Planet. Sci. Lett.236, 167–181 (2005).
ADS
CAS
Google Scholar
Karki, B. B., Ghosh, D. B. & Bajgain, S. K. inMagmas Under Pressure419–453 (Elsevier, 2018).
in و C. و & - تفاصيل مهمة
Putirka, K. D. & Xu, S. Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood.Nat. Commun.12, 6168 (2021).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets.Astrophys. J.914, 84 (2021).
ADS
CAS
Google Scholar
ADS و CAS و Google - تفاصيل مهمة
Vazan, A., Sari, R. & Kessel, R. A new perspective on the interiors of ice-rich planets: ice-rock mixture instead of ice on top of rock.Astrophys. J.926, 150 (2022).
ADS
CAS
Google Scholar
Luo, H., Dorn, C. & Deng, J. The interior as the dominant water reservoir in super-Earths and sub-Neptunes.Nat. Astron.8, 1399–1407 (2024).
ADS
Google Scholar
ADS و Google و Scholar - تفاصيل مهمة
Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley: hints from formation and evolution models.Astron. Astrophys.643, L1 (2020).
ADS
Google Scholar
Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores.Nat. Astron.8, 463–471 (2024).
ADS
PubMed
PubMed Central
Google Scholar
ADS و Google و Scholar - تفاصيل مهمة
Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of hycean worlds.Astrophys. J.918, 1 (2021).
ADS
CAS
Google Scholar
Cherubim, C. et al. TOI-1695 b: a water world orbiting an early-M dwarf in the planet radius valley.Astron. J.165, 167 (2023).
ADS
Google Scholar
ADS و Google و Scholar - تفاصيل مهمة
Osborne, H. L. M. et al. TOI-544 b: a potential water-world inside the radius valley in a two-planet system.Mon. Not. R. Astron. Soc.527, 11138–11157 (2023).
ADS
Google Scholar
Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains.Astrophys. J. Lett.939, L19 (2022).
ADS
Google Scholar
ADS و Google و Scholar - تفاصيل مهمة
Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the pressure dependence of theR1ruby fluorescence line to 195 kbar.J. Appl. Phys.46, 2774–2780 (1975).
ADS
CAS
Google Scholar
Prakapenka, V. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium.High Press. Res.28, 225–235 (2008).
ADS
CAS
Google Scholar
ADS و CAS و Google - تفاصيل مهمة
Deemyad, S. et al. Pulsed laser heating and temperature determination in a diamond anvil cell.Rev. Sci. Instrum.76, 125104 (2005).
ADS
Google Scholar
Fu, S., Chariton, S., Prakapenka, V. B., Chizmeshya, A. & Shim, S.-H. Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K.Phys. Rev. B105, 104111 (2022).
ADS
CAS
Google Scholar
ADS و Google و Scholar - تفاصيل مهمة
Fu, S., Chariton, S., Prakapenka, V. B. & Shim, S.-H. Core origin of seismic velocity anomalies at Earth’s core–mantle boundary.Nature615, 646–651 (2023).
ADS
CAS
PubMed
Google Scholar
Kulka, B. L., Dolinschi, J. D., Leinenweber, K. D., Prakapenka, V. B. & Shim, S.-H. The bridgmanite–akimotoite–majorite triple point determined in large volume press and laser-heated diamond anvil cell.Minerals10, 67 (2020).
ADS
CAS
Google Scholar
ADS و CAS و Google - تفاصيل مهمة
Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration.High Press. Res.35, 223–230 (2015).
ADS
CAS
Google Scholar
Shim, S.-H. PeakPo: a python software for x-ray diffraction analysis at high pressure and high temperature.Zenodohttps://doi.org/10.5281/zenodo.3376238 (2019).
Ye, Y., Prakapenka, V., Meng, Y. & Shim, S.-H. Intercomparison of the gold, platinum, and MgO pressure scales up to 140 GPa and 2500 K.J. Geophys. Res. Solid Earth122, 3450–3464 (2017).
and و Shim, و S.-H. - تفاصيل مهمة
ADS
CAS
Google Scholar
Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond–anvil cell.Rev. Sci. Instrum.69, 2421–2426 (1998).
ADS
CAS
Google Scholar
Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS.High Press. Res.39, 457–470 (2019).
& و Dewaele, و A., - تفاصيل مهمة
ADS
CAS
Google Scholar
Vazan, A., Helled, R., Kovetz, A. & Podolak, M. Convection and mixing in giant planet evolution.Astrophys. J.803, 32 (2015).
ADS
Google Scholar
Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets.Astrophys. J. Suppl. Ser.99, 713 (1995).
& و M. و and - تفاصيل مهمة
ADS
CAS
Google Scholar
Vazan, A., Kovetz, A., Podolak, M. & Helled, R. The effect of composition on the evolution of giant and intermediate-mass planets.Mon. Not. R. Astron. Soc.434, 3283–3292 (2013).
ADS
Google Scholar
Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures.Astrophys. J. Suppl. Ser.214, 25 (2014).
R. و of و and - تفاصيل مهمة
ADS
Google Scholar
Shim, S.-H. Experimental data for hydrogen-silicate reaction (Data set).Zenodohttps://doi.org/10.5281/zenodo.15586691 (2025).
Shim, S.-H. Jupyter notebooks for Supplementary Codes (0.0.1).Zenodohttps://doi.org/10.5281/zenodo.15678598 (2025).
Sakamaki, K. et al. Melting phase relation of FeHxup to 20 GPa: implication for the temperature of the Earth’s core.Phys. Earth Planet. Interiors174, 192–201 (2009).
for و Shim, و S.-H. - تفاصيل مهمة
ADS
CAS
Google Scholar
Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite.J. Geophys. Res. Solid Earth112, B06208 (2007).
ADS
Google Scholar
Ohtani, E. Melting relation of Fe2SiO4up to about 200 kbar.J. Phys. Earth27, 189–208 (1979).
J. و of و to - تفاصيل مهمة
CAS
Google Scholar
Andrault, D. et al. Melting behavior of SiO2up to 120 GPa.Phys. Chem. Miner.47, 10 (2020).
ADS
CAS
Google Scholar
Zha, C., Liu, H., Tse, J. S. & Hemley, R. J. Melting and highP–Ttransitions of hydrogen up to 300 GPa.Phys. Rev. Lett.119, 075302 (2017).
Melting و of و up - تفاصيل مهمة
PubMed
Google Scholar
Narygina, O. et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core.Earth Planet. Sci. Lett.307, 409–414 (2011).
ADS
CAS
Google Scholar
Thompson, E. et al. High-pressure geophysical properties of fcc phase FeHX.Geochem. Geophys. Geosyst.19, 305–314 (2018).
of و et و al. - تفاصيل مهمة
ADS
CAS
Google Scholar
Kato, C. et al. Stability of fcc phase FeH to 137 GPa.Am. Mineral.105, 917–921 (2020).
ADS
Google Scholar
Tagawa, S., Gomi, H., Hirose, K. & Ohishi, Y. High-temperature equation of state of FeH: implications for hydrogen in Earth’s inner core.Geophys. Res. Lett.49, e2021GL096260 (2022).
of و Kato, و C. - تفاصيل مهمة
ADS
CAS
Google Scholar
Ikuta, D. et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core.Sci. Rep.9, 7108 (2019).
ADS
PubMed
PubMed Central
Google Scholar
Shibazaki, Y. et al. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy.Phys. Earth Planet. Inter.228, 192–201 (2014).
et و al. و in - تفاصيل مهمة
ADS
CAS
Google Scholar
Ohta, K., Suehiro, S., Hirose, K. & Ohishi, Y. Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures.Comptes Rendus Geosci.351, 147–153 (2019).
ADS
Google Scholar
Dorogokupets, P. I., Dymshits, A. M., Litasov, K. D. & Sokolova, T. S. Thermodynamics and equations of state of iron to 350 GPa and 6000 K.Sci. Rep.7, 41863 (2017).
K. و of و and - تفاصيل مهمة
ADS
CAS
PubMed
PubMed Central
Google Scholar
Piet, H. et al. Superstoichiometric alloying of H and close-packed Fe-Ni metal under high pressures: implications for hydrogen storage in planetary core.Geophys. Res. Lett.50, e2022GL101155 (2023).
ADS
CAS
Google Scholar
Piet, و H. و et - تفاصيل مهمة
نشر لأول مرة على:www.nature.com
تاريخ النشر:2025-10-29 02:00:00
الكاتب:H. W. Horn
تنويه من موقع “yalebnan.org”:
تاريخ و النشر: و 2025-10-29 - تفاصيل مهمة
تم جلب هذا المحتوى بشكل آلي من المصدر:
www.nature.com
بتاريخ:2025-10-29 02:00:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة:قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية ة ومواكبة لأبرز نجوم لبنان والعالم العربي.



