علوم وتكنولوجيا

Building wet planets through high

  • Fulton, B. J. et al. The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS

    Google Scholar

  • Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Bitsch, B. et al. Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line. Astron. Astrophys. 649, L5 (2021).

    ADS
    CAS

    Google Scholar

  • Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen–silane–water envelopes. Mon. Not. R. Astron. Soc. 524, 981–992 (2023).

    ADS
    CAS

    Google Scholar

  • Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution. Planet. Sci. J. 3, 127 (2022).


    Google Scholar

  • Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).

    ADS
    CAS

    Google Scholar

  • Ikoma, M. & Genda, H. Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696 (2006).

    ADS
    CAS

    Google Scholar

  • Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    ADS
    CAS
    PubMed

    Google Scholar

  • Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2 atmospheres. Nature 616, 306–311 (2023).

    ADS
    CAS
    PubMed

    Google Scholar

  • Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

    ADS

    Google Scholar

  • Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    ADS

    Google Scholar

  • Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    ADS
    CAS

    Google Scholar

  • Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment expected from formation models. Astron. Astrophys. 634, A31 (2020).

    ADS
    CAS

    Google Scholar

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    ADS
    CAS
    PubMed

    Google Scholar

  • Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat. Astron. 7, 206–222 (2022).

    ADS

    Google Scholar

  • Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “Steam World” atmosphere of GJ 9827 d. Astrophys. J. Lett. 974, L10 (2024).

    ADS
    CAS

    Google Scholar

  • Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012).

    ADS

    Google Scholar

  • Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-neptunes explained by fugacity crisis. Astrophys. J. Lett. 887, L33 (2019).

    ADS
    CAS

    Google Scholar

  • Sabat, K. C., Rajput, P., Paramguru, R. K., Bhoi, B. & Mishra, B. K. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem. Plasma Process. 34, 1–23 (2014).

    ADS
    CAS

    Google Scholar

  • Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 6, 1296–1307 (2022).

    ADS

    Google Scholar

  • Krissansen-Totton, J., Wogan, N., Thompson, M. & Fortney, J. J. The erosion of large primary atmospheres typically leaves behind substantial secondary atmospheres on temperate rocky planets. Nat. Commun. 15, 8374 (2024).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Horn, H. W., Prakapenka, V., Chariton, S., Speziale, S. & Shim, S.-H. Reaction between hydrogen and ferrous/ferric oxides at high pressures and high temperatures—implications for sub-neptunes and super-earths. Planet. Sci. J. 4, 30 (2023).

    CAS

    Google Scholar

  • Kim, T. et al. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres. Proc. Natl Acad. Sci. USA 120, e2309786120 (2023).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Shinozaki, A. et al. Influence of H2 fluid on the stability and dissolution of Mg2SiO4 forsterite under high pressure and high temperature. Am. Mineral. 98, 1604–1609 (2013).

    ADS
    CAS

    Google Scholar

  • Shinozaki, A. et al. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure and temperature. Am. Mineral. 99, 1265–1269 (2014).

    ADS

    Google Scholar

  • Stökl, A., Dorfi, E. A., Johnstone, C. P. & Lammer, H. Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825, 86 (2016).

    ADS

    Google Scholar

  • Vazan, A., Ormel, C. W., Noack, L. & Dominik, C. Contribution of the core to the thermal evolution of sub-Neptunes. Astrophys. J. 869, 163 (2018).

    ADS
    CAS

    Google Scholar

  • Goncharov, A. F. et al. X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev. Sci. Instrum. 81, 113902 (2010).

    ADS
    PubMed

    Google Scholar

  • Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. Solid Earth 100, 17699–17713 (1995).

    CAS

    Google Scholar

  • Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors. Astrophys. J. Lett. 982, L35 (2025).

    ADS
    CAS

    Google Scholar

  • Kim, T. et al. Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets. Nat. Astron. 5, 815–821 (2021).

    ADS

    Google Scholar

  • Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005).

    ADS
    CAS

    Google Scholar

  • Karki, B. B., Ghosh, D. B. & Bajgain, S. K. in Magmas Under Pressure 419–453 (Elsevier, 2018).

  • Putirka, K. D. & Xu, S. Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood. Nat. Commun. 12, 6168 (2021).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets. Astrophys. J. 914, 84 (2021).

    ADS
    CAS

    Google Scholar

  • Vazan, A., Sari, R. & Kessel, R. A new perspective on the interiors of ice-rich planets: ice-rock mixture instead of ice on top of rock. Astrophys. J. 926, 150 (2022).

    ADS
    CAS

    Google Scholar

  • Luo, H., Dorn, C. & Deng, J. The interior as the dominant water reservoir in super-Earths and sub-Neptunes. Nat. Astron. 8, 1399–1407 (2024).

    ADS

    Google Scholar

  • Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley: hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    ADS

    Google Scholar

  • Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of hycean worlds. Astrophys. J. 918, 1 (2021).

    ADS
    CAS

    Google Scholar

  • Cherubim, C. et al. TOI-1695 b: a water world orbiting an early-M dwarf in the planet radius valley. Astron. J. 165, 167 (2023).

    ADS

    Google Scholar

  • Osborne, H. L. M. et al. TOI-544 b: a potential water-world inside the radius valley in a two-planet system. Mon. Not. R. Astron. Soc. 527, 11138–11157 (2023).

    ADS

    Google Scholar

  • Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains. Astrophys. J. Lett. 939, L19 (2022).

    ADS

    Google Scholar

  • Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774–2780 (1975).

    ADS
    CAS

    Google Scholar

  • Prakapenka, V. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press. Res. 28, 225–235 (2008).

    ADS
    CAS

    Google Scholar

  • Deemyad, S. et al. Pulsed laser heating and temperature determination in a diamond anvil cell. Rev. Sci. Instrum. 76, 125104 (2005).

    ADS

    Google Scholar

  • Fu, S., Chariton, S., Prakapenka, V. B., Chizmeshya, A. & Shim, S.-H. Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K. Phys. Rev. B 105, 104111 (2022).

    ADS
    CAS

    Google Scholar

  • Fu, S., Chariton, S., Prakapenka, V. B. & Shim, S.-H. Core origin of seismic velocity anomalies at Earth’s core–mantle boundary. Nature 615, 646–651 (2023).

    ADS
    CAS
    PubMed

    Google Scholar

  • Kulka, B. L., Dolinschi, J. D., Leinenweber, K. D., Prakapenka, V. B. & Shim, S.-H. The bridgmanite–akimotoite–majorite triple point determined in large volume press and laser-heated diamond anvil cell. Minerals 10, 67 (2020).

    ADS
    CAS

    Google Scholar

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    ADS
    CAS

    Google Scholar

  • Shim, S.-H. PeakPo: a python software for x-ray diffraction analysis at high pressure and high temperature. Zenodo https://doi.org/10.5281/zenodo.3376238 (2019).

  • Ye, Y., Prakapenka, V., Meng, Y. & Shim, S.-H. Intercomparison of the gold, platinum, and MgO pressure scales up to 140 GPa and 2500 K. J. Geophys. Res. Solid Earth 122, 3450–3464 (2017).

    ADS
    CAS

    Google Scholar

  • Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond–anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).

    ADS
    CAS

    Google Scholar

  • Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Press. Res. 39, 457–470 (2019).

    ADS
    CAS

    Google Scholar

  • Vazan, A., Helled, R., Kovetz, A. & Podolak, M. Convection and mixing in giant planet evolution. Astrophys. J. 803, 32 (2015).

    ADS

    Google Scholar

  • Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).

    ADS
    CAS

    Google Scholar

  • Vazan, A., Kovetz, A., Podolak, M. & Helled, R. The effect of composition on the evolution of giant and intermediate-mass planets. Mon. Not. R. Astron. Soc. 434, 3283–3292 (2013).

    ADS

    Google Scholar

  • Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014).

    ADS

    Google Scholar

  • Shim, S.-H. Experimental data for hydrogen-silicate reaction (Data set). Zenodo https://doi.org/10.5281/zenodo.15586691 (2025).

  • Shim, S.-H. Jupyter notebooks for Supplementary Codes (0.0.1). Zenodo https://doi.org/10.5281/zenodo.15678598 (2025).

  • Sakamaki, K. et al. Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core. Phys. Earth Planet. Interiors 174, 192–201 (2009).

    ADS
    CAS

    Google Scholar

  • Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. Solid Earth 112, B06208 (2007).

    ADS

    Google Scholar

  • Ohtani, E. Melting relation of Fe2SiO4 up to about 200 kbar. J. Phys. Earth 27, 189–208 (1979).

    CAS

    Google Scholar

  • Andrault, D. et al. Melting behavior of SiO2 up to 120 GPa. Phys. Chem. Miner. 47, 10 (2020).

    ADS
    CAS

    Google Scholar

  • Zha, C., Liu, H., Tse, J. S. & Hemley, R. J. Melting and high PT transitions of hydrogen up to 300 GPa. Phys. Rev. Lett. 119, 075302 (2017).

    PubMed

    Google Scholar

  • Narygina, O. et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 307, 409–414 (2011).

    ADS
    CAS

    Google Scholar

  • Thompson, E. et al. High-pressure geophysical properties of fcc phase FeHX. Geochem. Geophys. Geosyst. 19, 305–314 (2018).

    ADS
    CAS

    Google Scholar

  • Kato, C. et al. Stability of fcc phase FeH to 137 GPa. Am. Mineral. 105, 917–921 (2020).

    ADS

    Google Scholar

  • Tagawa, S., Gomi, H., Hirose, K. & Ohishi, Y. High-temperature equation of state of FeH: implications for hydrogen in Earth’s inner core. Geophys. Res. Lett. 49, e2021GL096260 (2022).

    ADS
    CAS

    Google Scholar

  • Ikuta, D. et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Sci. Rep. 9, 7108 (2019).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Shibazaki, Y. et al. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy. Phys. Earth Planet. Inter. 228, 192–201 (2014).

    ADS
    CAS

    Google Scholar

  • Ohta, K., Suehiro, S., Hirose, K. & Ohishi, Y. Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures. Comptes Rendus Geosci. 351, 147–153 (2019).

    ADS

    Google Scholar

  • Dorogokupets, P. I., Dymshits, A. M., Litasov, K. D. & Sokolova, T. S. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci. Rep. 7, 41863 (2017).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Piet, H. et al. Superstoichiometric alloying of H and close-packed Fe-Ni metal under high pressures: implications for hydrogen storage in planetary core. Geophys. Res. Lett. 50, e2022GL101155 (2023).

    ADS
    CAS

    Google Scholar



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-29 02:00:00

    الكاتب: H. W. Horn

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-29 02:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى