Entanglement-enhanced nanoscale single-spin sensing | Nature
Entanglement-enhanced nanoscale single-spin sensing | Nature

Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).
Du, J., Shi, F., Kong, X., Jelezko, F. & Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 96, 025001 (2024).
Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).
Rosskopf, T. et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).
Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer) 3 sample volume. Science 339, 561–563 (2013).
Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).
Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).
Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).
Borst, M. et al. Observation and control of hybrid spin-wave–Meissner-current transport modes. Science 382, 430–434 (2023).
Ji, W. et al. Correlated sensing with a solid-state quantum multisensor system for atomic-scale structural analysis. Nat. Photon. 18, 230–235 (2024).
Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).
Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019).
Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).
Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).
Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).
Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).
Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).
Xie, T. et al. Beating the standard quantum limit under ambient conditions with solid-state spins. Sci. Adv. 7, eabg9204 (2021).
Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).
Romach, Y. et al. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).
Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).
Cooper, A., Sun, W. K. C., Jaskula, J.-C. & Cappellar, P. Environment-assisted quantum-enhanced sensing with electronic spins in diamond. Phys. Rev. Appl. 12, 044047 (2019).
Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).
Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).
Esat, T. et al. A quantum sensor for atomic-scale electric and magnetic fields. Nat. Nanotechnol. 19, 1466–1471 (2024).
Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).
Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell. Nat. Commun. 15, 8843 (2024).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).
Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).
Sushkov, A. O. et al. All-optical sensing of a single-molecule electron spin. Nano Letters 14, 6443–6448 (2014).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Guo, M. et al. A flexible nitrogen-vacancy center probe for scanning magnetometry. Rev. Sci. Instrum. 92, 055001 (2021).
Han, S. et al. Solid-state spin coherence time approaching the physical limit. Sci. Adv. 11, eadr9298 (2025).
Wang, M. et al. Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision. Sci. Adv. 8, eabn9573 (2022).
Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).
Iakoubovskii, K. & Stesmans, A. Vacancy clusters in diamond studied by electron spin resonance. Phys. Status Solidi A 201, 2509–2515 (2004).
Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).
Ungar, A., Cappellaro, P., Cooper, A. & Sun, W. K. C. Control of an environmental spin defect beyond the coherence limit of a central spin. PRX Quantum 5, 010321 (2024).
Stacey, A. et al. Evidence for primal sp2 defects at the diamond surface: candidates for electron trapping and noise sources. Adv. Mater. Interfaces 6, 1801449 (2019).
Murai, H. Spin-chemical approach to photochemistry: reaction control by spin quantum operation. J. Photochem. Photobiol. C Photochem. Rev. 3, 183–201 (2003).
Huang, Z. et al. Parallel accelerated electron paramagnetic resonance spectroscopy using diamond sensors. Phys. Rev. Lett. 134, 130801 (2025).
Bluvstein, D., Zhang, Z. R. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).
■ مصدر الخبر الأصلي
نشر لأول مرة على: www.nature.com
تاريخ النشر: 2025-11-26 02:00:00
الكاتب: Xu Zhou
تنويه من موقع “yalebnan.org”:
تم جلب هذا المحتوى بشكل آلي من المصدر:
www.nature.com
بتاريخ: 2025-11-26 02:00:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.




