Evolution of taste processing shifts dietary preference
Evolution of taste processing shifts dietary preference

Scott, K. Gustatory processing in Drosophila melanogaster. Annu. Rev. Entomol. 63, 15–30 (2018).
Auer, T. O., Shahandeh, M. P. & Benton, R. Drosophila sechellia: a genetic model for behavioral evolution and neuroecology. Annu. Rev. Genet. 55, 527–554 (2021).
Munch, D., Goldschmidt, D. & Ribeiro, C. The neuronal logic of how internal states control food choice. Nature 607, 747–755 (2022).
Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).
Policarpo, M., Baldwin, M. W., Casane, D. & Salzburger, W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat. Commun. 15, 1421 (2024).
Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010).
Li, X. et al. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet. 1, 27–35 (2005).
Toda, Y. et al. Early origin of sweet perception in the songbird radiation. Science 373, 226–231 (2021).
Zhang, G. et al. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): role of BminGR59f in larval growth. Insect Sci. 29, 1240–1250 (2022).
Yang, J. et al. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet. 17, e1009527 (2021).
Fujii, S. et al. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25, 621–627 (2015).
Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011).
Harris, D. T., Kallman, B. R., Mullaney, B. C. & Scott, K. Representations of taste modality in the Drosophila brain. Neuron 86, 1449–1460 (2015).
Li, J., Dhaliwal, R., Stanley, M., Junca, P. & Gordon, M. D. Functional imaging and connectome analyses reveal organizing principles of taste circuits in Drosophila. Curr. Biol. 35, 2391–2405 (2025).
Walker, S. R., Pena-Garcia, M. & Devineni, A. V. Connectomic analysis of taste circuits in Drosophila. Sci. Rep. 15, 5278 (2025).
Tastekin, I. et al. From sensory detection to motor action: the comprehensive Drosophila taste-feeding connectome. Preprint at bioRxiv https://doi.org/10.1101/2025.08.25.671814 (2025).
Shiu, P. K., Sterne, G. R., Engert, S., Dickson, B. J. & Scott, K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 11, e79887 (2022).
Snell, N. J. et al. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr Biol 32, 3758–3772 (2022).
Cavey, M. et al. Increased sugar valuation contributes to the evolutionary shift in egg-laying behavior of the fruit pest Drosophila suzukii. PLoS Biol. 21, e3002432 (2023).
Pelaez, J. N. et al. Taste evolution in an herbivorous drosophilid. Preprint at bioRxiv https://doi.org/10.1101/2024.02.27.582299 (2024).
Wang, W. et al. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 11, e81703 (2022).
Dweck, H. K., Talross, G. J., Wang, W. & Carlson, J. R. Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii. eLife 10, e81703 (2021).
Dweck, H. K. M. & Carlson, J. R. Molecular logic and evolution of bitter taste in Drosophila. Curr. Biol. 30, 17–30 (2020).
Dey, M., Brown, E., Charlu, S., Keene, A. & Dahanukar, A. Evolution of fatty acid taste in drosophilids. Cell Rep. 42, 113297 (2023).
McBride, C. S. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl Acad. Sci. USA 104, 4996–5001 (2007).
Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T. & Fuyama, Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5, 985–996 (2007).
Reisenman, C. E., Wong, J., Vedagarbha, N., Livelo, C. & Scott, K. Taste adaptations associated with host specialization in the specialist Drosophila sechellia. J. Exp. Biol. 226, jeb244641 (2023).
Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
Charlu, S., Wisotsky, Z., Medina, A. & Dahanukar, A. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat. Commun. 4, 2042 (2013).
Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).
Alvarez-Ocana, R. et al. Odor-regulated oviposition behavior in an ecological specialist. Nat. Commun. 14, 3041 (2023).
Task, D. et al. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 11, e72599 (2022).
Watanabe, K. et al. Interspecies comparative analyses reveal distinct carbohydrate-responsive systems among Drosophila species. Cell Rep. 28, 2594–2607 (2019).
Abe, M. et al. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J. Exp. Biol. 225, jeb244423 (2022).
Melvin, R. G. et al. Natural variation in sugar tolerance associates with changes in signaling and mitochondrial ribosome biogenesis. eLife 7, e40841 (2018).
Jacobs, R. V. et al. Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Cell Rep. 43, 114782 (2024).
Steck, K. et al. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife 7, e31625 (2018).
LeDue, E. E., Chen, Y. C., Jung, A. Y., Dahanukar, A. & Gordon, M. D. Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat. Commun. 6, 6667 (2015).
Chen, Y. D., Park, S. J., Joseph, R. M., Ja, W. W. & Dahanukar, A. A. Combinatorial pharyngeal taste coding for feeding avoidance in adult Drosophila. Cell Rep. 29, 961–973 (2019).
Guillemin, J. et al. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep. 43, 114625 (2024).
Takagi, S. et al. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat. Commun. 15, 7041 (2024).
Sanchez-Alcaniz, J. A. et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 9, 4252 (2018).
Lima, D. B. M., Dos Santos, A. L., Cardoso, C. A. L., Krause, L. C. & Caramao, E. B. Studies related to the chemical composition, biological activities and toxicity of methanolic extracts of noni (Morinda citrifolia) fruits and leaves. Nat. Prod. Res. 36, 5868–5871 (2022).
Tauber, J. M. et al. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genet. 13, e1007059 (2017).
Ikeda, R., Wada, M., Nishigaki, T. & Nakashima, K. Quantification of coumarin derivatives in noni (Morinda citrifolia) and their contribution of quenching effect on reactive oxygen species. Food Chem. 113, 1169–1172 (2009).
Ahn, J. E., Chen, Y. & Amrein, H. Molecular basis of fatty acid taste in Drosophila. eLife 6, e30115 (2017).
Devineni, A. V., Deere, J. U., Sun, B. & Axel, R. Individual bitter-sensing neurons in Drosophila exhibit both ON and OFF responses that influence synaptic plasticity. Curr. Biol. 31, 5533–5546 (2021).
Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C. & Ritchie, M. G. Evolution of a complex locus: exon gain, loss and divergence at the Gr39a locus in Drosophila. PLoS ONE 3, e1513 (2008).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Ma, D. et al. Structural basis for sugar perception by Drosophila gustatory receptors. Science 383, eadj2609 (2024).
Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature 634, 210–219 (2024).
McKellar, C. E., Siwanowicz, I., Dickson, B. J. & Simpson, J. H. Controlling motor neurons of every muscle for fly proboscis reaching. eLife 9, e54978 (2020).
Gonzalez Segarra, A. J., Pontes, G., Jourjine, N., Del Toro, A. & Scott, K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 12, RP88143 (2023).
Schlegel, P. et al. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021).
Prieto-Godino, L. L., Schmidt, H. R. & Benton, R. Molecular reconstruction of recurrent evolutionary switching in olfactory receptor specificity. eLife 10, e69732 (2021).
Chu, B., Chui, V., Mann, K. & Gordon, M. D. Presynaptic gain control drives sweet and bitter taste integration in Drosophila. Curr. Biol. 24, 1978–1984 (2014).
Inagaki, H. K., Panse, K. M. & Anderson, D. J. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84, 806–820 (2014).
Cui, X., Meiselman, M. R., Thornton, S. N. & Yapici, N. A gut-brain-gut interoceptive circuit loop gates sugar ingestion in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2024.09.02.610892 (2024).
Carvalho-Santos, Z. et al. Cellular metabolic reprogramming controls sugar appetite in Drosophila. Nat. Metab. 2, 958–973 (2020).
Ling, F., Dahanukar, A., Weiss, L. A., Kwon, J. Y. & Carlson, J. R. The molecular and cellular basis of taste coding in the legs of Drosophila. J. Neurosci. 34, 7148–7164 (2014).
Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).
Gohl, D. M. et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat. Methods 8, 231–237 (2011).
Arnoult, L. et al. Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339, 1423–1426 (2013).
Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in. Drosophila. Genetics 196, 961–971 (2014).
Port, F., Chen, H.-M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA 111, E2967–E2976 (2014).
Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).
Sanchez-Alcaniz, J. A., Zappia, G., Marion-Poll, F. & Benton, R. A mechanosensory receptor required for food texture detection in Drosophila. Nat. Commun. 8, 14192 (2017).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J. & Jefferis, G. S. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).
Ribeiro, C. & Dickson, B. J. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
■ مصدر الخبر الأصلي
نشر لأول مرة على: www.nature.com
تاريخ النشر: 2025-11-26 02:00:00
الكاتب: Enrico Bertolini
تنويه من موقع “yalebnan.org”:
تم جلب هذا المحتوى بشكل آلي من المصدر:
www.nature.com
بتاريخ: 2025-11-26 02:00:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.




