علوم وتكنولوجيا

A global coral phylogeny reveals resilience and vulnerability through deep time

A global coral phylogeny reveals resilience and vulnerability through deep time

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Knowlton, N. Coral reef biodiversity-habitat size matters. Science 292, 1493–1495 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mellin, C. et al. Cumulative risk of future bleaching for the world’s coral reefs. Sci. Adv. 10, eadn9660 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gault, J. A., Bentlage, B., Huang, D. & Kerr, A. M. Lineage-specific variation in the evolutionary stability of coral photosymbiosis. Sci. Adv. 7, eabh4243 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 316 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quattrini, A. M. et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 4, 1531–1538 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    Article 
    ADS 

    Google Scholar 

  • Vasseur, R. et al. Major coral extinctions during the early Toarcian global warming event. Glob. Planet. Change 207, 103647 (2021).

    Article 

    Google Scholar 

  • Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cairns, S. D. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322b (2007).


    Google Scholar 

  • Roberts, J. M., Wheeler, A., Freiwald, A. & Cairns, S. (eds) Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats (Cambridge University Press, 2009).

  • Orejas, C. et al. Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic). Sci. Rep. 11, 15170 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campoy, A. N. et al. The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Front. Mar. Sci. 7, 461 (2020).

    Article 

    Google Scholar 

  • McFadden, C. S. et al. Phylogenomics, origin, and diversification of Anthozoans (phylum Cnidaria). Syst. Biol. 70, 635–647 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ries, J. B. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–2849 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, Y. et al. Phylogenomic analyses provide insights into primate evolution. Science 380, 913–924 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zuntini, A. R. et al. Phylogenomics and the rise of the angiosperms. Nature 629, 843–850 (2024).

  • Erwin, D. H., Valentine, J. W. & Sepkoski, J. J. Jr A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41, 1177–1186 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scrutton, C. T. The Palaeozoic corals, I: origins and relationships. Proc. York. Geol. Soc. 51, 177–208 (1997).

    Article 

    Google Scholar 

  • Scrutton, C. T. & Clarkson, E. N. K. A new scleractinian-like coral from the Ordovician of the Southern Uplands, Scotland. Palaeontology 34, 179–194 (1991).


    Google Scholar 

  • Ezaki, Y. The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology 40, 1–14 (1997).


    Google Scholar 

  • Ezaki, Y. Paleozoic Scleractinia: progenitors or extinct experiments? Paleobiology 24, 227–234 (1998).

    Article 

    Google Scholar 

  • Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl Acad. Sci. USA 107, 11877–11882 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campoy, A. N., Rivadeneira, M. M., Hernández, C. E., Meade, A. & Venditti, C. Deep-sea origin and depth colonization associated with phenotypic innovations in scleractinian corals. Nat. Commun. 14, 7458 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindner, A., Cairns, S. D. & Cunningham, C. W. From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS ONE 3, e2429 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horowitz, J. et al. Bathymetric evolution of black corals through deep time. Proc. R. Soc. B 290, 20231107 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Buhl-Mortensen, L., Mortensen, P. B., Armsworthy, S. & Jackson, D. Field observations of Flabellum spp. and laboratory study of the behavior and respiration of Flabellum alabastrum. Bull. Mar. Sci. 81, 543–552 (2007).


    Google Scholar 

  • Veron, J. E. N. Corals in Space and Time: the Biogeography and Evolution of the Scleractinia (Cornell Univ. Press, 1995).

  • Ying, H. et al. Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biol. 19, 175 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanley, Jr. G. D. & Fautin, D. G. The origins of modern corals. Science 291, 1913–1914 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chadwick, N. E. & Adams, C. in Coelenterate Biology: Recent Research on Cnidaria and Ctenophora (eds Williams, R. B. et al.) 263–269 (Springer, 1991).

  • Daly, M. et al. The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668, 127–182 (2007).

  • Minter, N. J. et al. Early bursts of diversification defined the faunal colonization of land. Nat. Ecol. Evol. 1, 0175 (2017).

    Article 

    Google Scholar 

  • Judd, E. J. et al. A 485-million-year history of Earth’s surface temperature. Science 385, eadk3705 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hongzhen, W. & Jianqiang, C. Late Ordovician and early Silurian rugose coral biogeography and world reconstruction of palaeocontinents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 86, 3–21 (1991).

    Article 

    Google Scholar 

  • Fedorowski, J. Extinction of Rugosa and Tabulata near the Permian Triassic boundary. Acta Palaeont. Polonica. 34, 47–70 (1989).


    Google Scholar 

  • Stanley, G. D. Jr. The evolution of modern corals and their early history. Earth Sci. Rev. 60, 195–225 (2003).

    Article 
    ADS 

    Google Scholar 

  • Roniewicz, E. & Morycowa, E. Evolution of the Scleractinia in the light of microstructural data. Cour. Forsch. Senckenberg 164, 233–240 (1993).


    Google Scholar 

  • Anagnostou, E., Huang, K. F., You, C. F., Sikes, E. L. & Sherrell, R. M. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349, 251–260 (2012).

    Article 
    ADS 

    Google Scholar 

  • McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Plusquellec, Y., Webb, G. E. & Hoeksema, B. W. Automobility in Tabulata, Rugosa, and extant scleractinian analogues: stratigraphic and paleogeographic distribution of Paleozoic mobile corals. J. Paleontol. 73, 985–1001 (1999).

    Article 
    ADS 

    Google Scholar 

  • Hoeksema, B. W. & Bongaerts, P. Mobility and self-righting by a free-living mushroom coral through pulsed inflation. Mar. Biodivers. 46, 521–524 (2016).

    Article 

    Google Scholar 

  • Sentoku, A., Tokuda, Y. & Ezaki, Y. Burrowing hard corals occurring on the sea floor since 80 million years ago. Sci. Rep. 6, 24355 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peijnenburg, K. T. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitahara, M. V. Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).


    Google Scholar 

  • Capel, K. C. et al. Atlantia, a new genus of Dendrophylliidae (Cnidaria, Anthozoa, Scleractinia) from the eastern Atlantic. PeerJ 8, e8633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitahara, M. & Cairns, S. Tropical Deep-Sea Benthos Vol. 32 (Publications Scientifiques du Muséum, 2021).

  • Cairns, S. D. The Marine Fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa) (NIWA, 1995).

  • Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).

    Article 
    ADS 

    Google Scholar 

  • Seiblitz, I. G. et al. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol. Phylogenet. Evol. 175, 107565 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quattrini, A. M. et al. Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to longstanding problems. Mol. Ecol. Resour. 18, 281–295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cowman, P. F. et al. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol. Phylogenet. Evol. 153, 106944 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Quek, Z. B. R., Jain, S. S., Neo, M. L., Rouse, G. W. & Huang, D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol. Ecol. Resour. 20, 807–818 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duchêne, D. A., Mather, N., van der Wal, C. & Ho, S. Y. W. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst. Biol. 71, 676–689 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 15–30 (2018).

    Article 

    Google Scholar 

  • Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genom. 19, 23–40 (2018).

    Article 

    Google Scholar 

  • Wells, J. W. in Treatise on Invertebrate Paleontology, Part F. Coelenterata (ed. Moore, R. C.) F328–F444 (Geological Society of America, 1956).

  • Romano, S. L. & Palumbi, S. R. Evolution of scleractinian corals inferred from molecular systematics. Science 271, 640–642 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kitahara, M. V. et al. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5, e11490 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolarski, J. et al. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change. Sci. Rep. 6, 27579 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janiszewska, K. et al. Microstructural disparity between basal micrabaciids and other scleractinia: new evidence from Neogene Stephanophyllia. Lethaia 48, 417–428 (2015).

    Article 

    Google Scholar 

  • Carbone, F., Matteucci, R., Rosen, B. R. & Russo, A. Recent coral facies of the Indian Ocean coast of Somalia with an interim check list of corals. Facies 30, 1–13 (1994).

    Article 

    Google Scholar 

  • Vecsei, A. & Moussavian, E. Paleocene reefs on the Maiella platform margin, Italy: an example of the effects of the Cretaceous/Tertiary boundary events on reefs and carbonate platforms. Facies 36, 123–139 (1997).

    Article 

    Google Scholar 

  • Stolarski, J. & Vertino, A. First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53, 67–78 (2007).

    Article 

    Google Scholar 

  • Squires, D. F. The Cretaceous and Tertiary Corals of New Zealand Paleontological Bulletin 29 (New Zealand Geological Survey, 1958).

  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. W. & Smith, S. A. The past sure is tense: on interpreting phylogenetic divergence time estimates. Syst. Biol. 67, 340–353 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tribble, C. M. et al. RevGadgets: an R package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods Ecol. Evol. 13, 314–323 (2022).

    Article 

    Google Scholar 

  • Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. Preprint at BioRxiv https://doi.org/10.1101/555805 (2019).

  • Vaga, C. F. et al. Data for ‘A global coral phylogeny reveals resilience and vulnerability through deep time’. Figshare https://doi.org/10.6084/m9.figshare.29242487 (2025).

  • Bosellini, F. R., Papazzoni, C., A. & Vescogni, A. Exceptional development of dissepimental coenosteum in the new Eocene scleractinian coral genus Nancygyra (Ypresian, Monte Postale, NE Italy). Boll. Soc. Paleontol. Ital. 59, 291–298 (2020).

  • Stolarski, J. On Cretaceous Stephanocyathus (Scleractinia) from the Tatra Mts. Acta Palaeontol. Pol. 35, 31–39 (1990).



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: www.nature.com

    تاريخ النشر: 2025-10-22 03:00:00

    الكاتب: Claudia Francesca Vaga

    تنويه من موقع “yalebnan.org”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ: 2025-10-22 03:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “yalebnan.org”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    c3a1cfeb2a967c7be6ce47c84180b62bff90b38d422ff90b8b10591365df9243?s=64&d=mm&r=g
    ahmadsh

    موقع "yalebnan" منصة لبنانية تجمع آخر الأخبار الفنية والاجتماعية والإعلامية لحظة بلحظة، مع تغطية حصرية ومواكبة لأبرز نجوم لبنان والعالم العربي.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى